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Canonical phase-space approach to the noisy Burgers equation: Probability distributions

Hans C. Fogedby
Institute of Physics and Astronomy, University of Aarhus, DK-8000, Aarhus C, Denmark*

and NORDITA, Blegdamsvej 17, DK-2100, Copenhagen O” , Denmark
~Received 31 December 1998!

We present a canonical phase-space approach to stochastic systems described by Langevin equations driven
by white noise. Mapping the associated Fokker-Planck equation to a Hamilton-Jacobi equation in the nonper-
turbative weak noise limit we invoke aprinciple of least actionfor the determination of the probability
distributions. We apply the scheme to the noisy Burgers and Kardar-Parisi-Zhang equations and discuss the
time-dependent and stationary probability distributions. In one dimension we derive the long-time skew dis-
tribution approaching the symmetric stationary Gaussian distribution. In the short-time region we discuss
heuristically the nonlinear soliton contributions and derive an expression for the distribution in accordance with
the directed polymer-replica and asymmetric exclusion model results. We also comment on the distribution in
higher dimensions.@S1063-651X~99!09705-6#

PACS number~s!: 05.10.Gg, 64.60.Ht, 05.45.Yv
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I. INTRODUCTION

This is the third of a series of papers where we investig
the noisy Burgers equation in the context of modeling
growing interface; for a brief account of the present pa
also we refer to@1#. The previous two papers are denoted
paper I@2# and paper II hereafter@3#; a brief account of pape
II also appeared in@4#. In papers I and II we discussed th
originally proposed one-dimensional noiseless Burgers eq
tion @5,6# from a solitonic point of view and the noisy one
dimensional Burgers equation@7,8# in terms of a Martin-
Siggia-Rose~MSR! path integral@9–14#, respectively.

Phenomena far from equilibrium are widespread, inclu
ing turbulence in fluids, interface and growth problem
chemical reactions, biological systems, and even econom
and sociological structures. In recent years much of the fo
of modern statistical physics and soft condensed matter
shifted towards such systems. Drawing on the case of s
and dynamic critical phenomena in and close to equilibri
@15,16#, where scaling, critical exponents, and universa
have served to organize our understanding and to pro
calculational tools, a similar approach has been advan
towards nonequilibrium phenomena with the purpose of e
cidating scaling properties and more generally the morph
ogy or pattern formation in a driven state.

In this context the noisy Burgers equation provides ma
the simplest continuum description of an open driven non
ear system exhibiting scaling and pattern formation. T
Burgers equation was originally suggested in the o
dimensional noiseless version@5,6,17–19#,

S ]

]t
2lu¹ Du5n¹2u, ~1.1!

as a model for irrotational hydrodynamical fluid flow. Hereu
is the irrotational velocity field andn is a damping constan
or viscosity. Choosing the nonlinear couplingl521, we

*Permanet address.
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recognize the usual nonlinear convective term@20#. As a
nonlinear model for hydrodynamical turbulence@21–27#, Eq.
~1.1! has been studied intensively. It was recognized ea
that the nonlinear structure of the damped velocity field
dominated by shock waves@6,19#, yielding an inverse cas-
cadeand that the Burgers equation does, in fact, not cha
terize Navier-Stokes turbulence, which is governed by adi-
rect cascadeand Kolmogoroff scaling in the inertial regime

Treating the fieldu as the local slope of a growing inter
face, we analyzed in paper I, where a more complete bi
ography can be found, the Burgers equation from the poin
view of a soliton-carrying nonlinear damped evolution equ
tion @28#. The equation describes the transient damped e
lution of an initial slope configurationu0 in terms of a gas of
moving right-hand viscosity-smoothed solitons connected
ramp solutions and with superposed damped diffusive mo
with a gap in their spectrum proportional to the soliton a
plitudes. In a heuristic sense the transient morphology is t
characterized by two kinds of excitations: Nonlinear solit
modes and linear gapful diffusive modes. This picture is a
borne out by the nonlinear Cole-Hopf transformation@29–
31#,

w~x,t !5expF l

2nE
x

dx8 u~x8,t !G , ~1.2!

relating the slope fieldu to the diffusive fieldw satisfying the
linear diffusion equation,

]w

]t
5n¹2w, ~1.3!

with solution

w~x,t !5E dx8 G~x2x8,t !w0~x8!, ~1.4!

G~x,t !5@4pnt#21/2 exp@2x2/4nt#, ~1.5!
5065 ©1999 The American Physical Society
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5066 PRE 59HANS C. FOGEDBY
w0~x!5expF l

2nE
x

dx8 u0~x8!G , ~1.6!

allowing for a steepest descent analysis in the inviscid li
n→0 @23,24#.

The emphasis on the nonlinear modes in paper I and
insight gained formed the natural starting point for our stu
of the noisy Burgers equation in paper II. This equation h
the form @7,8,31–33#,

S ]

]t
2lu¹ Du5n¹2u1¹h, ~1.7!

where the Gaussian white noise driving the equation is s
tially short-range correlated according to

^h~x,t !h~x8,t8!&5Dd~x2x8!d~ t2t8!, ~1.8!

characterized by the noise strengthD. Equation~1.7! has a
much richer structure than the noiseless counterpart.
noise is here a singular perturbation in the sense that ev
weak noise strengthD eventually drives the morphology de
scribed by Eq.~1.7! into a stationary driven state; the cha
acteristic time scale is set byt} ln(1/D), which diverges for
D→0. The singular nature of the noise is also reflected in
known stationary probability distribution for the slope fie
@31,34–36#,

Pst~u!}expF2
n

DE dx u~x!2G . ~1.9!

HereD constitutes an essential singularity in the same m
ner as the temperature entering the usual Boltzmann fac

Recasting the stochastic Langevin equation~1.7! in terms
of a Martin-Siggia-Rose path integral@9–12,14,13#, we pro-
poseda principle of least actionin the nonperturbative wea
noise limitD→0 and derived canonical saddle point or fie
equations~note that in paper II the noise fieldw was rotated,
w→2 iw),

S ]

]t
2lu¹ Du5n¹2w, ~1.10!

S ]

]t
2lu¹ Dw5n¹2u, ~1.11!

coupling the slope fieldu to a deterministic auxiliarynoise
field w. The coupled field equations~1.10! and ~1.11! effec-
tively replace the stochastic equation~1.7! and describe the
morphology of a growing interface. In addition to the righ
hand soliton already present in the noiseless case as
cussed in paper I, the field equations~1.10! and ~1.11! also
admit an equivalent left-hand soliton. A growing interfa
can thus be viewed as a gas of connected right-hand
left-hand solitons with superposed diffusive modes. T
weak noise approach also allows a dynamical descriptio
the soliton and diffusive mode configurations and associ
an actionS, energyE, and momentumP with a particular
interface morphology. The statistical weight of a configu
tion is given by exp@2S/D# with the dynamical actionS,
it
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providing the generalization of the Boltzmann fact
exp@2E/T# for equilibrium processes to dynamical process

The Martin-Siggia-Rose path integral approach moreo
permitted a simple interpretation of the scaling properties
a growing interface. The dynamical exponentz53/2, enter-
ing in the dynamical scaling relation@31–33,35–39#,

^u~x,t !u~0,0!&5uxu2z22F~ utu/uxuz!, ~1.12!

is thus related to the gapless soliton dispersion law

E}lPz, ~1.13!

whereas the roughness exponentz51/2 follows from the
spectral representation,

^u~x,t !u~0,0!&5E dK G~K !exp@2 iEt1 iKx#,

~1.14!

assuming that the form factorG(K);const in the scaling
regionk;0. The dynamical scaling universality class is a
sociated with the lowest gapless excitation, i.e., forlÞ0 the
soliton mode. Forl50 the Edwards-Wilkinson~EW! uni-
versality class@31,36,40# emerges with a gapless diffusiv
mode v5nk2, corresponding toz52, z51/2 being unal-
tered. Furthermore, we derived a heuristic expression for
scaling functionF in terms of the probability distribution for
Lévy flights @41,42#; the scaling function has also been a
cessed by a mode coupling approach@43,44#.

Summarizing, the weak noise saddle-point approach
the noisy Burgers equation advanced in paper II yield
many-body description of the morphology of a growing i
terface in terms of two kinds ofquasiparticlesor elementary
excitations: Nonlinear soliton modes corresponding to t
faceted steplike growth of an interface with superposed
ear diffusive modes. Furthermore, the scaling properties
the notion of universality classes follow as a byproduct fro
the dispersion law of the lowest gapless excitation. For
tails and references we refer the reader to the somewha
torial presentation in paper II.

Whereas a good understanding of the one-dimensio
case has been achieved both by renormalization group m
ods @7,8,31–33,37# and @45–47,44#, by mapping to directed
polymers@31#, by mapping to spin chains@48–50#, from the
lattice exclusion model@51–53#, and by the soliton approac
in paper II, the general case ind dimensions has proven
much more difficult. Ind dimensions the noisy Burger
equation takes the form@7,8#,

S ]

]t
2lum¹mDun5n¹2un1¹nh. ~1.15!

Here the longitudinal vector fieldun , n51, . . . ,d, is asso-
ciated with the height profileh of a growing interface accord
ing to (l n is a line element!

un5¹nh,

h~xn!5Exn
dln un . ~1.16!
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Furthermore,¹25¹n¹n and we assume summation over r
peated Cartesian indices. The height fieldh is thus the un-
derlying potential for the force or slopefield un . It follows
from Eqs.~1.15! and~1.16! thath satisfies the Kardar-Paris
Zhang~KPZ! equation@31–33#,

]h

]t
5n¹2h1

l

2
¹nh¹nh1F1h, ~1.17!

for a growing interface ind dimensions. Assuminĝh&50
we have for completion here introduced the drift termF5
2(l/2)^¹nh¹nh& in Eq. ~1.17! in order to ensure that̂h&
decays in time in a comoving frame. In Eqs.~1.15! and
~1.17! n is damping constant or viscosity characterizing t
linear diffusive term,l is a coupling strength for the non
linear mode coupling or growth term, and, finally,h is a
Gaussian white noise driving the equation and correla
according to

^h~xn ,t !h~xn8 ,t8!&5D)
n

d~xn2xn8!d~ t2t8!,

~1.18!

whereD is the noise strength.
In higher-dimensions dynamic renormalization group c

culations @31–33# yield a ~lower! critical dimension atd
52 and a kinetic phase transition aboved52, separating a
smooth phase characterized by the EW universality c
yielding z5(22d)/2 andz52 and a rough phase characte
ized by a strong coupling fixed point. On the transition li
renormalization group calculations and scaling argume
based on the mapping to directed polymers yield the ex
nentsz50 andz52 and suggest an upper critical dimensi
d54 @54#. Most recently, an operator expansion method
been applied to the strong coupling phase yielding (z,z)
5(2/5,8/5) ind52 and (z,z)5(2/7,12/7) ind53 @55,56#.

In the present paper we focus on the stationary and ti
dependent probability distributions for the height and slo
fields described by the Burgers and KPZ equations~1.15!
and ~1.17!, respectively. As discussed in paper II these d
tributions are basically given by the Martin-Siggia-Rose p
integral weighted by the effective action for the appropri
paths. In the weak noise limit only the paths governed by
saddle-point equations contribute to the distributions and
will be discussed here, we can actually circumvent the pa
integral formulation entirely by a more direct approach ba
on the Fokker-Planck equation. In the weak noise limit t
equation takes the form of a Hamilton-Jacobi equation
plying a symplectic structure and immediately lending its
to a canonical phase-space formulation. We are thus able
very direct manner to map the stochastic processes desc
by the KPZ-Burgers equations to a conserved dynamical
tem with orbits satisfying deterministic canonical Hamilto
equations, identical to the saddle-point equations in the p
integral approach. The stochastic nature of the Lange
equations is reflected in the peculiar topology of the ene
surfaces. It turns out that the stationary probability distrib
tion is determined by an infinite-time orbit on the zer
energy manifold whereas the time-dependent distribut
approaching the stationary one at long times, correspond
a finite-time orbit. Below we highlight some of our results
d
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~i! In the generic case of a general nonlinear Lange
equation for a set of stochastic variables driven by wh
noise, the weak noise limit of the associated Fokker-Pla
equation takes the form of a Hamilton-Jacobi equati
which in turn implies a symplectic structure with aprinciple
of least action, an action, an associated Hamiltonian, a
Hamilton equations of motion. This formulation is equiv
lent to the saddle-point discussion in the Martin-Siggia-Ro
approach in paper II.

~ii ! The ensuing canonical phase-space formulation allo
for a discussion of the time-dependent probability distrib
tions, i.e., the weak noise solutions of the Fokker-Plan
equation, in terms of phase-space orbits on conserved en
surfaces, governed by Hamilton equations of motion. T
action associated with an orbit plays the role of a weig
function in much the same way as the Hamiltonian enter
the Boltzmann factor in the description of thermodynam
equilibrium. In the kinetic nonequilibrium problem define
by the Langevin equation the dynamic action yields the pr
ability distributions.

~iii ! In the canonical phase-space formulation the und
lying stochastic nature of the Langevin equation and the
laxational character of the solutions of the Fokker-Plan
equation are reflected in the topological structure of the
ergy surfaces. A structure that differs markedly from the e
ergy surface topology for ordinary dynamical problems,
particular, the zero-energy manifold that determines the
tionary state, i.e., the stationary probability distribution, ha
two-fold submanifold structure, including a hyperbolic st
tionary point, which in the simple case of a single stochas
variable, corresponds to the unstable maximum of anin-
verted potential. Moreover, thewaiting time for the orbits
passing close to the stationary point accounts for the M
kovian behavior of the probability distributions. Finally, th
long-time orbit close to the zero-energy manifold determin
via the action the time-dependent probability distribution.

~iv! In the case of a few degrees of freedom the canon
phase-space approach yields the established results follo
from an analysis of the Fokker-Planck equations. On
other hand, in the case of many degrees of freedom, i.e.
field theoretical case, the Fokker-Planck equation beco
an unwieldy multidimensional differential-integro equatio
and the canonical phase-space approach, replacing
Fokker-Planck equation~in the weak noise limit! with
coupled canonical field equations yields, in addition to p
viding an alternative point of view of the stochastic pr
cesses in terms of dynamical system theory, a methodol
cal advantage; particularly in the case where we c
determine the zero-energy manifold explicitly.

~v! In the field theoretical cases of the noisy Burgers
KPZ equations in one dimension, we can, for special r
sons, identify the zero-energy manifold and determine:~a!
the stationary distribution,~b! the long-time diffusive mode
contribution to the time-dependent skew distribution and~c!
a heuristic expression for the short-time~transient! soliton
mode contribution. In the interesting case of higher dime
sions we are only able to make some general statement

The paper is organized in the following manner. In Sec
we consider the generic case of a nonlinear Langevin eq
tion for many stochastic variables driven by white noise. W
analyze the associated Fokker-Planck equation in the w
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noise limit and set up the canonical phase-space formula
In Sec. III we consider as an example the stochastic o
damped motion in a harmonic potential. In Sec. IV we ap
the formulation to the Burgers and KPZ equations and de
expressions for the distributions. Finally, in Sec. V w
present a discussion and a conclusion.

II. THE CANONICAL PHASE-SPACE APPROACH

Path-integral formulations of the Fokker-Planck equat
in the field theoretical case and aspects of the canon
structure have been discussed in the literature, see@57# for
further referencing. Also the sympletic structure of t
Fokker-Planck equation in the weak noise limit for few d
grees of freedom with special emphasis on the station
distribution has been treated in@58#, where other reference
can be found. We believe, however, to the best of our kno
edge, that the present emphasis on the canonical phase-
formulation as a practical tool is new. For this purpose
here set up the general canonical phase-space formalism
hering to the notation in@57# we consider a general Langev
equation with additive noise@59,60#,

dqn

dt
52

1

2
Fn~qm!1hn . ~2.1!

Hereqn , n51, . . . ,N, is a set of time-dependent stochas
variables. The indexn is discrete but is readily generalize
later to the field theoretical case of infinitely many degrees
freedom wheren typically includes the spatial variables. Th
forces Fn(qm) are general functions ofqn . In the linear case
of coupled ~overdamped! oscillators, Fn52Vnmqm(t),
where Vnm is a damping matrix. Finally, the equation is
driven stochastically by a white-noise termhn with a Gauss-
ian distribution and correlated according to

^hn~ t !hm~ t8!&5DKnmd~ t2t8!. ~2.2!

Here Knm is a constant, symmetric, positive-definitenoise
matrix of O(1) and the correlations are characterized by
noise strengthD.

Introducing the notation¹n5]/]qn the Fokker-Planck
equation for the ~conditional! probability distribution
P(qn ,t,qn8) associated with Eq.~2.1! has the form
@57,59,60#,

]P

]t
5

1

2
¹n@FnP1DKnm¹mP#, ~2.3!

including a drift term¹n(FnP), arising from the determinis
tic forceFn , and a diffusion termDKnm¹n¹mP, originating
from the noisehn .

In the equilibrium case, choosingKnm5dnm and setting
Fn5¹nF, corresponding to an effective fluctuation
dissipation theorem and an underlying thermodynamic f
energy F, Eq. ~2.3! admits the stationary solutionPst
}exp@2F/D# with D entering as a temperature and ma
ematically as a singular parameter, i.e., the Boltzmann
tribution. Using this as a guiding principle we search in t
general nonequilibrium case for solutions to Eq.~2.3! of the
form,
n.
r-
y
e

n
al

-
ry

l-
ace

e
d-

f

e

e

-
s-

P}expF2
1

D
SG , ~2.4!

where the weight functionSreplaces the free energyF in the
equilibrium case. By insertion and keeping only terms
leading order inD, it is easy to show thatS satisfies an
equation of the Hamilton-Jacobi form@61–63#,

]S

]t
1H~qn ,¹nS!50, ~2.5!

where, introducing the canonical momentum and energy

pn5¹nS, ~2.6!

E5H, ~2.7!

the conserved energy or Hamiltonian is given by

H5 1
2 Knmpnpm2 1

2 Fnpn . ~2.8!

From the symplectic structure and dynamical system the
the canonical phase-space structure follows immediat
The actionS has the form@61#,

S5E dtS pn

dqn

dt
2H D , ~2.9!

and from the ensuingprinciple of least actionwe derive the
Hamiltonian equations of motion,dqn /dt5]H/]pn and
dpn /dt52]H/]qn ,

dqn

dt
5Knmpm2

1

2
Fn , ~2.10!

dpn

dt
5

1

2
pm¹nFm , ~2.11!

for the orbits inpn-qn phase space.
The above formulation allows a simple interpretation

the solution of the Fokker-Planck equation~2.3! in the weak
noise limit D→0 in terms of orbits in a canonical phas
space. In order to determine the transition probabi
P(qn ,T,qn8) for a configurationqn8 at t50 to a configuration
qn at t5T, we simply solve the Hamilton equations~2.10!
and~2.11! for an orbit fromqn8 to qn traversed in timeT and,
subsequently, evaluate the action according to Eq.~2.9!,
yielding the weight function in Eq.~2.4!, i.e.,

P~qn ,T,qn8!}expF2
1

DE0,qn8

T,qn
dtS pn

dqn

dt
2H D G .

~2.12!

We notice that the relevant orbit is determined by the init
and final valuesqn8 and qn and the elapsed timeT. The ca-
nonically conjugate momentumpn is a slaved variablede-
termined by Eq.~2.11! and parametrically coupled to Eq
~2.10!. Also, unlike the case in ordinary mechanics, the e
ergy E5H in Eq. ~2.8! is not the central quantity in the
present interpretation. The traversal timeT is the important
variable and the energy manifoldE(T) on which the orbit
from qn8 to qn lies is a function ofT.
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The stochastic nature of the Langevin equation~2.1! and
the properties of the weak noise solution of the Fokk
Planck equation~2.3! are reflected in the topological sub
manifold structure of the energy surfaces inpn-qn phase
space. Unlike an ordinary mechanical problemH is not
bounded from below and does not separate in a kinetic
ergy and a potential energy only depending onqn . In Eq.
~2.8! the potential2(1/2)Fnpn is momentum~velocity! de-
pendent and gives rise to unbounded motion. Assuming
simplicity that Fn→0 for qn→0 the energy surfaces hav
the submanifold structure depicted in Fig. 1.

The origo in phase space constitutes a hyperbolic stat
ary point, that is, a saddle point determined by the ze
energy submanifoldpn50 and the zero-energy submanifo
defined by Knmpm2Fn being orthogonal topn , i.e.,
Knmpm2Fn'pn .

Assuming Fn(qm);2Vnmqm for small qn the Hamil-
tonian~2.8! is quadratic inpn andqn and a stability analysis
can easily be carried out. In accordance with the pres
physical interpretation we assume that the stability or dam
ing matrixVnm implies an unstablepn50 submanifold and a
stable submanifoldKmnpm2Fn'pn . The orbits in phase
space close to the zero-energy manifold are thus those
picted in Fig. 1. In theharmonic oscillator picture, which
applies close to the stationary point, this behavior cor
sponds to the motion in aninverted parabolic potential as
discussed in more detail in Sec. III.

The stationary state is given by orbits on the zero-ene
manifold whose structure thus determines the nature of
stochastic problem. Assuming thatE(T)}exp@2const3T#
for T→` the stationary state

Pst~qn!5 lim
T→`

P~qn ,T,qn8!, ~2.13!

is obtained from Eq.~2.12!, i.e.,

Pst~qn!} lim
T→`

expF2
1

DE0

`

dt pn

dqn

dt G . ~2.14!

We note that forT→` the orbit fromqn8 to qn converges to
the zero-energy manifold, i.e.,Pst is determined by the
infinite-time orbits on the zero-energy manifold.

FIG. 1. Canonical phase space in the general case. The
curves indicate the zero-energytransientsubmanifold~I! and sta-
tionarysubmanifold~II !. The stationary saddle point is at the origi
The finite time~T! orbit from qn8 to qn migrates to the zero-energ
submanifold forT→`.
-

n-

or

n-
-

nt
-

e-

-

y
e

The basic structure of phase space, depicted in Fig
allows for a simple dynamical discussion in terms of d
namical system theory@18,63,64# of the approach to the sta
tionary state of a damped noise-driven stochastic system.
first consider an orbit on anEÞ0 surface fromqn8 to qn in
time T. The energy surfaceE(T) depends onT and in the
limit T→`, E→0 in order to attain the stationary state. F
E→0 the initial part of the orbit moves close to thepn50
submanifold and from Eq.~2.10! is determined by

dqn

dt
52

1

2
Fn , ~2.15!

i.e., the deterministic noiseless version of the Langevin eq
tion ~2.1!. In the absence of noise the motion is transient a
damped. Near thetransient submanifoldpn50 the corre-
sponding actionS;0 and the probabilityP5const, corre-
sponding to a deterministic behavior. The orbit slows do
near the stationary point in phase space before it picks
again and moves close to the otherstationarysubmanifold
Knmpm2Fn'pn . This part of the orbit carries a finite actio
S, i.e., P depends onqn , terminates inqn at time T, and
corresponds forT→` to the stationary state. The Markovia
behavior, i.e., the loss of memory or the independence of
initial configurationqn8 , is thus associated with the long~in-
finite! waiting time near~at! the stationary point.

Whereas the transient submanifoldpn50, yieldingE50,
is consistent with the Hamiltonian equations~2.10! and
~2.11! and gives rise to the deterministic equation~2.15!, the
other possibility of imposing a zero-energy submanifold
settingKnmpm5Fn will, in general, violate Eqs.~2.10! and
~2.11!. Assuming for simplicityKnm5dnm ~note that the
symmetric noise matrixKnm can always be diagonalized by
suitable choice ofpn) we obtain, insertingpn5Fn in Eqs.
~2.10! and ~2.11!, that the relationshipFm(¹mFn2¹nFm)
50 must hold. In the special case whereFn5¹nF, corre-
sponding to an effective fluctuation-dissipation theorem a
an underlying free energyF, the above constraint is trivially
satisfied and we obtain the time-reversed equation of mo
dqn /dt5(1/2)Fn governing the orbit on thepn5Fn station-
ary submanifold. It is interesting to notice that the damp
motion on the transientpn50 submanifold is precisely equa
to the time-reversed growing motion on the stationarypn
5Fn submanifold. Finally, it is an easy task to determine t
stationary distribution,

Pst}expF2
1

D
F~qn!G , ~2.16!

by insertion ofpn5¹nF in Eq. ~2.14! and integrating over
time, in agreement with the solution of the Fokker-Plan
equation~2.3! in the stationary case settingKnm5dnm and
Fn5¹nF.

We are led to the conjecture that for systems in therm
equilibrium where the forceFn is derived from a thermody-
namic free energyF, Fn5¹nF, the infinite-time orbits on
the stationary zero-energy submanifold actually converge
the submanifoldpn5Fn , yielding the stationary distribution
~2.16!. In the general case of a driven stochastic system w
a forceFn not derivable from a free energy the only co

lid
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straint is given byKnmpm2Fn'pn and we have to solve th
Hamilton equations~2.10! and ~2.11! in order to determine
the phase-space orbits.

We finally wish to comment on the connection betwe
the present canonical phase-space approach and the form
tion in terms of a~MSR! path integral presented in paper I
For simplicity we consider only the case of a single stoch
tic degree of freedomq and set the noise matrixKnm51.

All the relevant properties are extracted from the gene
tor @57#,

Z~m!5 K expF i E dt m~ t !q~ t !G L , ~2.17!

where^•••& denotes an average with respect to the Gaus
noise distribution,

P~h!}expF2
1

2DE dt h~ t !2G . ~2.18!

The Langevin equation~2.1! for one degree of freedom i
enforced by the delta function constraint*) t dt Jd@dq/dt
1(1/2)F2h#51, where the Jacobian J
5exp@(1/4)*dt dF/dq# @57#. Exponentiating the constrain
and in the process introducing an additionalnoise variable p,
averaging over the noiseh according to Eq.~2.18!, and scal-
ing p, p→p/D, we obtain the expression,

Z~m!}E )
t

dp dqexpF i

D
SMSRGexpF i E dt m~ t !q~ t !G ,

~2.19!

where the action has the Feynman form@65,66#,

SMSR5E dtS p
dq

dt
2HMSRD , ~2.20!

with complex Hamiltonian

HMSR52
1

2
pF2

i

2
p21 i

D

4

dF

dq
. ~2.21!

For the probability distributionP(q,t,q8) we find, in par-
ticular,

P~q,t,q8!}E
q8

q

)
t

dp dqexpF i

D
SMSRG , ~2.22!

where SMSR5*0
t dt(p dq/dt2HMSR) and the path integra

samples all orbits fromq85q(0) to q5q(t) weighted with
SMSR; note that the noise field ranges freely.

Reconstructing the underlyingquantum mechanics, yield-
ing the path integral~2.22!, P(q,t,q8) can be regarded as
matrix element of the evolution operator exp@2iĤMSRt# in a
q basis, P(q,t,q8)}^quexp(2iĤMSRt)uq8&, where ĤMSR is
thequantumversion ofHMSR. It follows thatP(q,t,q8) then
satisfies theSchrödinger equation,

iD
]P

]t
5ĤMSRP, ~2.23!
ula-

-

-

an

with D playing the role of an effectivePlanck constant. The
noise variablep becomes the momentum operatorp̂5

2 iDd/dq and we obtain, insertingp→ p̂ in Eq. ~2.21!,

ĤMSR5 i
1

2 FD2
d2

dq2
1 i ~ p̂F !order1

D

2

dF

dqG , ~2.24!

where since@ p̂,q#52 iD andF depends onq we still have
to specify the ordering in (p̂F)order.

Comparing Eqs.~2.23! and~2.24! with the Fokker-Planck
equation~2.3! in the present case,

]P

]t
5

1

2 FD
d2

dq2
1F

d

dq
1

dF

dqGP, ~2.25!

we find agreement provided we choose the symmetric or
ing (p̂F)order5

1
2 ( p̂F1Fp̂). Alternatively, we are free to

choose anormal ordering ( p̂F)order5 p̂F and neglect the
Jacobian contribution (D/2)dF/dq in Eq. ~2.24!. The
Fokker-Planck equation then becomes the underlyingSchrö-
dinger equationfor the path integral with a complex non
Hermitian Hamiltonian,

ĤFP5 i
1

2 FD2
d2

dq2
1D

d

dq
FG . ~2.26!

The non-Hermitian form ofĤFP with the p̂ operator on the
left ensures that Eq.~2.25! has the form of a conservatio
law ensuring the conservation of probability.

In the limiting caseF52vq the HamiltonianHMSR de-
scribes a harmonic oscillator and it is easy to see that
Jacobian contributioni (D/4)dF/dq5 i (D/2)v in ĤMSR pre-
cisely cancels the zero-point motion and ensures a statio
state fort→`.

Finally, in the classicalweak noise limit forD→0, the
path integral~2.22! is dominated by theclassicalor station-
ary orbits following from the principle of least action
dSMSR50 and determined as solutions of the Hamilton eq
tions of motion: dq/dt5]HMSR/]p and dp/dt5
2]HMSR/]q; the distribution being given by P
}exp@(i/D)SMSR#. This procedure is, however, entirel
equivalent to performing the limitD→0 directly in the
Fokker-Planck equation, yielding the Hamilton-Jacobi eq
tion ~2.5! and the present canonical phase-space approa

III. THE HARMONIC OSCILLATOR—AN EXAMPLE

In order to illustrate the phase-space method we here
ply it to the simple case of an overdamped harmonic os
lator described by the Langevin equation and noise corr
tions,

dq

dt
52vq1h, ~3.1!

^h~ t !h~ t8!&5Dd~ t2t8!, ~3.2!

with associated Fokker-Planck equation,
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]P

]t
5

1

2

]

]q FD ]P

]q
12vqPG . ~3.3!

This system is well-known and easily analyzed@57,59#. The
time-dependent probability distributionP(q,T,q8), the solu-
tion of Eq. ~3.3!, is given by

P~q,T,q8!}expF2
v

D

@q2q8exp~2vT!#2

12exp~22vT! G , ~3.4!

approaching the stationary distribution,

Pst~q!}expF2
1

D
vq2G , ~3.5!

in the limit T→`.
We now proceed to derive these results within the cano

cal phase-space formulation. SinceF52vq and K51 for
one degree of freedom, we obtain from Eqs.~2.8!–~2.11! the
Hamiltonian,

H5 1
2 p22vqp, ~3.6!

the action

S5E dtS p
dq

dt
2H D , ~3.7!

and the Hamilton equations of motion,

dq

dt
5p2vq, ~3.8!

dp

dt
5vp. ~3.9!

The phase space is depicted in Fig. 2 and corresponds t
vicinity of the stationary point in Fig. 1 for one degree
freedom.

For a single degree of freedom we can explicitly det
mine both zero-energy submanifolds:p50 and p52vq,
and determine the orbits. On the transientp50 submanifold

FIG. 2. Canonical phase-space plot in the case of an o
damped oscillator. The solid curves indicate the zero-energytran-
sientsubmanifold~I! andstationarysubmanifold~II !. The station-
ary saddle point is at the origin. The finite time~T! orbit from q8 to
q9 migrates to the zero-energy submanifold forT→`. We have
also indicated the sign of the energyE in the four domains.
i-

the

-

dq/dt52vq, i.e., the deterministic equation of motion fo
h50, with a damped solutionq5q0 exp@2vt#, q05q(0),
corresponding to the damped orbit approaching the stat
ary saddle point at (p,q)5(0,0). The action associated wit
this orbit isS50, i.e.,P5const, characterizing the determin
istic motion. On the stationary submanifoldp52vq the
Hamiltonian equations coincide,dq/dt5vq, and we obtain
a growing solutionq5q0 exp@vt#, q05q(0), associated with
the orbit emerging from the stationary point. As discussed
Sec. II we note that thestationaryorbit is the time-reversed
mirror of the transientorbit.

The complete solution of Eqs.~3.8! and~3.9! is also eas-
ily obtained. For an orbit fromq8 to q9 in time T and, noting
that p is a slaved variable, we obtain

q~ t !5
q9 sinhvt1q8 sinhv~T2t !

sinhvT
, ~3.10!

p~ t !5v
q9evt2q8ev(t2T)

sinhvT
. ~3.11!

For largeT the noise variablep is initially close to zero,
corresponding to the transient deterministic regime; fot
close toT, p eventually leaves zero and approaches the l
iting value 2vq9, corresponding to the stationary regim
Likewise, we note thatq;0 for T→` for most t. The be-
havior of q andp is depicted in Fig. 3.

The orbit fromq8 to q9 traversed in timeT lies on the
energy surface given by

E5
v2

2

q921q8222q8q9 coshvT

sinh2 vT
. ~3.12!

For fixed q8 and q9 the energyE is a function of T, E
5E(T). In the limit T→`, E→0 and the orbit converges t
the zero-energy manifold as indicated in Fig. 2. The act
T5` orbit passing through the stationary point is then d
fined by the limiting orbit forT→`.

Moreover, from the Hamilton equations~3.8! and ~3.9!
we readily deduce the second-orderNewton equation of mo
tion,

d2q

dt2
5v2q, ~3.13!

r-

FIG. 3. Plot of q and p as functions oft in the case of an
overdamped oscillator. In~a! we depict the dependence ofq; for
largeT the coordinateq stays close to the stationary saddle point.
~b! we show the dependence ofp; for largeT the momentump is
initially close to the transient submanifoldp50 but eventually
moves on to thestationarysubmanifoldp52vq.
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5072 PRE 59HANS C. FOGEDBY
describing the orbit in an inverted harmonic potent
2(1/2)v2q2, and allowing for a simple discussion of th
motion in p-q phase space.

The finite-energy orbits fall in two categories dependi
on the sign ofE. For E.0 the orbits pass through the un
stable maximum of the inverted potential with finite mome
tum; for E,0 the unbounded orbits are confined by the p
tential to either positive or negative values ofq. The limiting
caseE50 corresponds to an orbit approaching the ma
mum, the hyperbolic stationary point, with zero momentu
This point represents an unstable equilibrium where thepar-
ticle spends an infinite amount of time, corresponding to
establishment of Markovian behavior, i.e., the loss
memory and independence of the initial configurationq9.
The motion is depicted in Fig. 4.

In terms of the explicit solutions~3.10! and ~3.11! we
finally derive the action associated with the orbit,

S5v
~q92q8e2vT!2

12e22vT
, ~3.14!

and recover fromP}exp@2S/D# the time-dependent and i
the limit T→`, stationary distributions~3.4! and ~3.5!, re-
spectively.

The Hamiltonian~3.6! and the equations of motion~3.8!
and ~3.9!, yielding the canonical phase-space representa
of the Langevin equation for a noise-driven overdamped h
monic oscillator, have the same structure as the dynam
description of an ordinary harmonic oscillator. Shifting t
momentum,p→p1vq, H→(1/2)p22(1/2)vq2, describing
the motion in an inverted harmonic potential as discus
above. The equations of motion now take the formdq/dt
5p anddp/dt5vq with solutions given as linear combina
tions of a growing and a damped solution as in Eqs.~3.10!
and ~3.11!. However, performing a Wick rotationt→ i t 5t
in combination with the transformation to a complex m
mentump→2 ip; note thatp is basically a dummy variable
representing the noise. We obtainH→2Hosc, whereHosc is
the oscillator HamiltonianHosc5

1
2 p21 1

2 v2q2, yielding the
equations of motiondq/dt5p, and dp/dt52vq with
bounded periodic motion in imaginary timet. The energy
E5Hosc is positive and the finite-energy orbits inp-q phase
space move on concentric ellipses. The zero-energy man
corresponds to the origin (p,q)5(0,0) in phase space. I

FIG. 4. In the case of the overdamped oscillator the orbits inp-q
phase space depicted in Fig. 2 corresponds inq space to the motion
in an inverted parabolic potential. The unstable maximum corr
sponds to the stationary saddle point.
l
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fact, subject to the Wick rotationt→ i t and arotation of p,
p→2 ip, this phase-space structure is mapped to the ph
space structure in Fig. 2 with a hyperbolic stationary po
and unbounded orbits. As pointed out in Sec. II it is precis
in the energy surface topology that the stochastic prob
differs from an ordinary dynamical problem, here exemp
fied in the context of the oscillator. Correspondingly, t
action~3.7! for an orbit fromq8 to q9 in time iT transforms
to 2 iSosc1(v/2)(q922q82) whereSosc is the action for a
harmonic oscillator@65,66#,

Sosc5
v

2 sinvT
@~q921q82!cosvT22q8q9#, ~3.15!

yielding P(q9,iT,q8) in accordance with Eq.~3.4!.
Finally, we present a simple calculation of the leadi

correction at long times to the stationary distribution~3.5!,
which will prove useful in our discussion of the Burger
KPZ equations in the next section. ForT→` the orbit in
phase space is close to the stationary zero-energy subm
fold p52vq. Replacing the orbit fromq8 to q9 at long times
T with an orbiton the stationary manifoldwe obtain a con-
straint, which allows us to simply evaluate the correction
Pst. Consequently, inserting the zero-energy constrainp
52vq in the canonical equation~3.8! yields dq/dt5vq
with solutionq95exp(vT)q8 for q8 andq9 on thep52vq
manifold. Inserting this solution in the action~3.7! we obtain

S5v~q922q82!5vq92@12exp~22vT!#, ~3.16!

in accordance with an expansion of the exact result~3.14! to
leading order in exp(2vT).

IV. CANONICAL FORMULATION
OF THE BURGERS—KPZ EQUATIONS

In this section we apply the canonical phase-space me
developed in Sec. II to the Burgers and KPZ equations~1.15!
and ~1.17!.

A. The general case

First applying the canonical formulation to the Burge
equation~1.15! the indexn in Sec. II now comprises both th
continuous spatial coordinatexn , n51, . . . ,d and the vector
index of the slope fieldun , n51, . . . ,d, i.e.,n→xn ,n. Fur-
thermore, we choose the noise matrixKnm and the forcesFn

according to the prescription,Knm→¹2)nd(xn2xn8) and
Fn→22(n¹2un1lum¹mun). With the identification qn
→un(xm) andpn→pn(xm) we thus obtain the Burgers actio
and Hamiltonian density,

SB5E
0

T

ddx dtS pn

]un

]t
2HBD , ~4.1!

HB5pnS n¹2un1lum¹mun2
1

2
¹n¹mpmD , ~4.2!

and the ensuing Hamilton equations of motion,

S ]

]t
2lum¹mDun5n¹2un2¹n¹mpm , ~4.3!
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S ]

]t
2lum¹mD pn52n¹2pn1l~pn¹mum2pm¹num!.

~4.4!

The time-dependent probability distribution is then in t
weak noise limit given by

P~un ,T,un8!}expF2
1

D
SB~un ,T,un8!G . ~4.5!

The Hamilton equations~4.3! and ~4.4! determining the or-
bits in pn-un phase space thus replace the noisy Burg
equation~1.15! in the weak noise limit and the distributio
~4.5!, evaluated for an appropriate orbit fromun8 to un tra-
versed in timeT, constitutes a weak noise solution of th
Fokker-Planck equation associated with the Burgers eq
tion,

]P~un ,t !

]t

52E ddx
d

dun
@~n¹2un1lum¹mun!P~un ,t !#

1
D

2E ddx ddx8
d2

dundun8
F¹2)

n
d~xn2xx8!P~un ,t !G .

~4.6!

The time-dependent and stationary distributions are de
mined by the orbits near and on the zero-energy manif
From the general discussion in Sec. II it follows that t
zero-energy manifold has a submanifold structure with
transientpn50 submanifold, a hyperbolic stationary point
(un ,pn)5(0,0), and a stationary submanifold defined
n¹2un1lum¹mun2(1/2)¹n¹mpm orthogonal to pn; here
treating the integration overx in *ddxHB as aninner prod-
uct. On the transient submanifoldpn50 Eq.~4.4! is trivially
satisfied and the orbits are governed by the noiseless Bur
equation,

S ]

]t
2lum¹mDun5n¹2un , ~4.7!

which is analyzed by means of the Cole-Hopf transformat
~1.2! un5¹nh, h5(2n/l)ln w, with w satisfying Eq.~1.3!
and solved by means of the Green’s function~1.5! general-
ized to thed-dimensional case. On the other hand, on
stationary submanifold defined by*ddxHB50, determining
the stationary distributionPst(un), the orbits are given by the
coupled equations~4.3! and~4.4! and will be discussed in the
next section.

For later reference we also present the canonical for
lation of the KPZ equation~1.17!. Here we chooseqn

→h(x), pn→p(x), Knm→)nd(xn2xn8), and Fn→
22@n¹2h1(l/2)¹nh¹nh#, and obtain action, Hamiltonian
density, and equations of motion,

SKPZ5E
0

T

ddx dtS p
]h

]t
2HKPZD , ~4.8!
rs

a-

r-
d.

a

ers

n

e

u-

HKPZ5pS n¹2h1
l

2
¹nh¹nh1

1

2
pD , ~4.9!

]h

]t
5n¹2h1

l

2
¹nh¹nh1p, ~4.10!

]p

]t
52n¹2p1l¹n~p¹nh!, ~4.11!

yielding the weak noise distribution

P~h,T,h8!}expF2
1

D
SKPZ~h,T,h8!G , ~4.12!

as solution of the Fokker-Planck equation,

]P~h,t !

]t
52E ddx

d

dh F S n¹2h1
l

2
¹nh¹nhD P~h,t !G

1
D

2E ddx ddx8
d2

dh dh8
F)

n
d~xn2xn8!P~h,t !G .

~4.13!

The KPZ formulation is, however, completely equivale
to the Burgers formulation. In Eq.~4.3! only the longitudinal
component of the noise fieldpn couples to the longitudina
slope fieldun5¹nh and we can without loss of generalit
assume thatpn5¹nf is purely longitudinal since Eq.~4.4! is
linear in pn ; this property reflects the conserved noise¹nh
driving the Burgers equation~1.15!. Comparing Eqs~4.3!
and ~4.4! with Eqs. ~4.10! and ~4.11! we obtain complete
equivalence by choosing¹mpm52p or p52¹2f.

B. The one-dimensional case

In one dimension and focusing on the slope fieldu, which
in many respects is thenatural variable in discussing a grow
ing interface, the canonical equations~4.3! and~4.4! take the
simple form,

S ]

]t
2lu¹ Du5n¹2u2¹2p, ~4.14!

S ]

]t
2lu¹ D p52n¹2p, ~4.15!

originating from the Hamiltonian density,

HB5pS n¹2u1lu¹u2
1

2
¹2pD . ~4.16!

We note that bothu and p are scalar fields and that th
l-dependent term on the right-hand side of Eq.~4.4! cancels.
Also, subject to the shift transformationp5n(u2w) Eqs.
~4.14! and ~4.15! are identical to the equations~1.10! and
~1.11! discussed in paper II.

It is an important property of the one-dimensional ca
that we can determine the explicit form of the stationa
zero-energy manifold, as was the trivial case for one deg
of freedom discussed in Sec. II. For
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p52nu, ~4.17!

the canonical equations~4.14! and ~4.15! become identical
and the energy density~4.16! takes the form of a total de
rivative, HB→(2/3)ln¹u3, yielding a vanishing total en
ergy EB5*HB50 for vanishing slope field at the bound
aries. Owing to the vector character ofun and pn and the
presence of thel(pn¹mum2pm¹num) term in Eq. ~4.4!,
such a transformation does not seem possible ford.1 and
we do not have a similarcontractionof the stationary sub-
manifold.

In other words, ind51 the orbit fromu8 to u9 in time T
for T→` does not only approach the zero-energy subma
folds p50 and n¹2u1lu¹u2 1

2 ¹2p orthogonal top but
actually converges to the submanifoldp52nu on the sta-
tionary submanifold. This phase-space behavior is depic
in Fig. 5. In Fig. 5~a! we show thecontractionof the station-
ary manifold. In Fig. 5~b! we depict the orbits inp-u phase
space in a similar manner as in Fig. 2.

We finally wish to present a plausibility argument for th
attraction of the orbits to the submanifold given by E
~4.17!. Denoting the deviation from the submanifold bydu
and insertingp52n(u1du) in Eqs. ~4.14! and ~4.15! we
obtain to leading order indu,

S ]

]t
2lu¹ D du5n¹2du. ~4.18!

Noting that]/]t2lu¹ is invariant under the Galilean trans
formation x→x2lu0t, u→u1u0 and choosing a loca
frame with vanishing u, the Fourier modes duk
}exp@2nk2t#→0 for large t, implying that the orbits ap-
proach the zero-energy submanifold.

V. DISCUSSION AND CONCLUSION

In this final section we derive results for the probabil
distributions and attempt to draw some general conclus
on the basis of the canonical phase-space approach to
noisy Burgers and KPZ equations presented in the prev
sections.

A. The one-dimensional case

The time-dependent distribution~4.5! is determined by
the form of the actionSB(u,T) in Eq. ~4.1!. The following
analysis implies that the action has the generic form,

FIG. 5. Here we depict the phase-space behavior in the cas
the noisy one-dimensional Burgers equation. In~a! we show the
contractionto the zero-energy submanifoldp52nu, characteristic
of the one-dimensional case. In~b! we show similar to Fig. 2 the
orbits in p-u phase space.
i-

d

.

s
the
us

SB5Sst~u!1Sdiff~u,T!1Ssol~u,T!, ~5.1!

whereSst yields the stationary distribution~1.9!, Sdiff gives
rise to corrections due to the linear diffusive modes, andSsol
originates from the nonlinear soliton modes; bothSdiff and
Ssol must vanish in the limitT→` so that we attain the
stationary distribution given bySst.

In the linear Edwards-Wilkinson case forl50 only dif-
fusive modes contribute and there is no growth. In wa
number space the field equations~4.14! and ~4.15! take the
same form as Eqs.~3.8! and ~3.9! in Sec. III. A straightfor-
ward generalization of Eqs.~3.10! and~3.14! then yields the
orbit, uk95uk(T), uk85uk(0), andvk5nk2,

uk~ t !5
uk9 sinhvkt1uk8 sinhvk~T2t !

sinhvkT
, ~5.2!

and action, hereuk5uk(T),

Slin5nE dk

2p

uuk2uk8 exp~2vkT!u2

12exp~22vkT!
. ~5.3!

We note that in the limitT→` the action Slin(u,T)
→n*(dk/2p)uuku2 in accordance with the stationary distr
bution in Eq.~1.9! expanded in wave-number space. Since
long timesuk5exp(vkT)uk8 we also find the correction,

Sdiff52nE dk

2p
uuku2 exp~22vkT!. ~5.4!

From Eqs.~5.3! and ~5.4! we observe the simple scalin
property,u→mu, Slin→m2Slin , andSdiff→m2Sdiff , i.e., scal-
ing the slope or height field with a factorm the action scales
with m2. This behavior is compatible with the equations
motion ~4.14! and ~4.15! provided we scalep→mp.

Regarding the time dependence ofSlin andSdiff , we iden-
tify the crossover time

Tco
diff;

1

nk2
, ~5.5!

depending on the wave numberk. In the thermodynamic
limit L→` the wave numberk has a continuous range an
the crossover time diverges in the infrared limitk→0. Con-
sequently, we do not have a separation of time scales.

Since the saturation width of an interface is a finite-s
effect time scale separation only occurs for a finite system
the present linear case this is associated with thequantization
of the wave numberk;1/L; note that then50 mode is
related to the global conservation of slope, i.e.,*dx u is a
constant of motion, and we have

Tco
diff;

L2

n
. ~5.6!

From the general discussion of a growing interface,Tco}Lz,
where z is the dynamic scaling exponent, and we read
obtainz52 in accordance with the diffusive mode contrib
tion with dispersionvk5nk2. For T!Tco

diff the diffusive
modes contribute to the time-dependent distribution, wher

of
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for T@Tco
diff we cross over to the stationary regim

Sdiff(u,T)→0, and we approach the stationary distributi
~1.9! determined bySst(u).

1. The stationary distribution

In the one-dimensional case the stationary distribution
known @34# and has the symmetric Gaussian form given
Eq. ~1.9!. This follows directly from the stationary Fokker
Planck equation~4.6! where thel-dependent term for a
Gaussian distribution becomes a total derivative and t
yields a vanishing contribution; an argument, which on
holds in one dimension. The slope fieldu(x) is thus uncor-
related beyond a finite correlation lengthj that is zero for the
Burgers equation and microscopic for lattice models fall
in the same universality class. The heighth(x)5*dx u per-
forms random walk yielding according to Eq.~1.12! the
roughness exponentz51/2.

Within the present canonical phase-space formulation
stationary distribution follows immediately from the stru
ture p52nu of the stationary submanifold. As in the ha
monic oscillator case in Sec. III, the diffusive modes imp
that EB→0 for T→`. Thus insertingp52nu in the action
~4.1! in the one-dimensional case and performing the ti
integration, we obtain in the limitT→`,

Sst~u!5E
0

`

dx dt p
]u

]t
5nE dx u~x!2, ~5.7!

and by insertion in Eq.~4.5! the distribution~1.9!.
Whereas the effective fluctuation-dissipation theor

valid in one dimension implies that the stationary distrib
tion is Gaussian and symmetric in the slopeu and in the
height fieldh, measured relative to the mean height^h&, the
time-dependent distribution, converging towards the stati
ary one, is expected to exhibit an asymmetric shape co
sponding to the predominance of peaks inh in the growth
direction.

2. The long-time skew distribution

The phase-space approach also allows us to estimate
long-time corrections to the stationary distribution. Follo
ing the reasoning in Sec. III we replace for largeT the orbit
near the submanifoldp52nu with an orbiton the submani-
fold. Insertingp52nu in Eq. ~4.14! the orbits on the station
ary submanifold are governed by the noiseless Burgers e
tion with n replaced by2n,

S ]

]t
2lu¹ Du52n¹2u. ~5.8!

This equation is readily solved by means of the Cole-H
transformation~1.2! with solution given by Eqs.~1.4!–~1.6!
with 2n substituted forn. For the action~4.1! we then ob-
tain SB5n*dx@u22u82# and for the time-dependent prob
ability distribution,

P~u,T!}Pst~u!Pskew~u,T!, ~5.9!

where the symmetric stationary distributionPst(u) is given
by Eq. ~1.9! and the time-dependent skew correction by
is
y

s

e

e

-

-
e-

the

a-

f

Pskew~u,T!5expF n

DE dx u8~x!2G , ~5.10!

with u85¹h8 andu5¹h related by the Cole-Hopf transfor
mation,

expF2
l

2n
h8~x!G5E dx8 G~x2x8,T!expF2

l

2n
h~x8!G .

~5.11!

Note that since*dx8G51 the correctionu82 vanishes in the
limit T→` andPskew→1.

In order to examine the skewness of the distribution it
convenient to eliminate the stationary component by form
the ratio,

P~u,T!

P~2u,T!
5expF n

DE dx~u81
2 2u82

2 !G , ~5.12!

where according to the Cole-Hopf transformation~5.11!,

expF2
l

2n
h68 G5E dx8 G~x2x,T!expF7

l

2n
hG .

~5.13!

Inserting the Green’s function ~1.5!, G(x,T)
5@4pnT#21/2exp@2x2/4nT#, we consider first a few simple
cases.

For a constant slopeu5u0, i.e., h5u0x2h0, we obtain,
performing the Gaussian integration,h68 56(u0x1h0)
2lTu0

2/2. We note that the growth termlu¹u as expected
gives rise to a time-dependent term inh68 . This term, how-
ever, is compensated for by transforming to a comov
frame as in the KPZ equation~1.17!. The slopeu8, however,
is independent ofT and we obtainu68 56u0, yielding SB

50 andP5const, i.e., no dynamics. This is consistent w
the fact thatu5u0 andp5p0 trivially satisfy the field equa-
tions ~4.14! and~4.15! yielding EB50, and thus correspond
to a stationary state, as also discussed in paper II.

Choosing a slope depending linearly onx, u52s0x, cor-
responding to a parabolic height profile,h5s0x21h0, we
obtain u68 562s0x/(162lTs0), yielding the skewness ra
tio,

P~u,T!

P~2u,T!
5expF2

32

3

nl

D
s0

3 TL3

@12~2lTs0!2#2G ,

~5.14!

where we have introduced the sizeL of the system. The
expression~5.14! only holds forlTs0,1; the important as-
pect is, however, the dependence on the sign ofs0, i.e., the
slope of the slope or the bias of the height profile. Fors0
.0 corresponding to a parabolic shape ofh with a mini-
mum, i.e., a downward peak,P(u,T)/P(2u,T),1, whereas
for s0,0, yielding an upward peak inh, we have
P(u,T)/P(2u,T).1. This behavior implies that the distri
bution is skew at finite times and that the upward peaks ih
statistically are more pronounced than the downward pe
i.e., the distribution is biased and changes asymmetric
towards the symmetric stationary distribution.
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We can also gain some insight in the inviscid limitn
→0 from a saddle-point calculation along the lines of simi
treatments of the noiseless Burgers equation@32,33#. From
Eq. ~5.11! we obtain, inserting the Green’s function~1.5!,

expF2
l

2n
h68 G5E dx8@4pnT#21/2exp@2~1/2n!f6#,

~5.15!

wheref6(x,x8)5(x2x8)2/2T6lh(x8). In the limit n→0
the integral is dominated by the local minima given
df6(x,x8)/dx850 and the conditiond2f6(x,x8)/dx82.0.
The solutionsx68 are thus determined by the implicit equ
tion x68 2x57lTu(x68 ) together with the conditions
6(du/dx8)x85x

68
.21/lT, and we obtain the ratio,

P~u,T!

P~2u,T!
5expF n

DE dx
~x2x18 !22~x2x28 !2

~lT!2 G ,

~5.16!

which can be used in order to analyze the skewness of v
ous profilesu(x). Note that P(u,T)/P(2u,T)→1 in the
limit T→`, corresponding to vanishing skewness. In Fig
we have depicted the saddle-point construction.

More insight into the dynamics underlying the skew lon
time distribution is gained by expanding Eq.~5.11! in the
nonlinear coupling. Choosing a compact notation,ux
5u(x), hx5h(x), Gxx8(T)5G(x2x8,T), and dxx85d(x
2x8), we obtain to leading order inl,

ux85E dx8 Gxx8~T!ux82~l/n!E dx8 Gxx8~T!ux8hx8

1~l/n!E dx8 dx9 Gxx8~T!Gxx9~T!ux8hx9 . ~5.17!

Correspondingly,Pskew factorizes in a component indepe
dent ofl and a component depending onl,

Pskew5P0Pl , ~5.18!

P05expF n

DE dx dx8 Gxx8~2T!uxux8G , ~5.19!

FIG. 6. Here we show the saddle-point construction valid in
inviscid limit n→0. The saddle-point conditionx28 2x5lTu(x28 )
determinesx28 as the intersection between the line with slope 1/lT
and the slope profileu(x8). The intersection of the line with thex8
axis determinesx.
r

ri-

-

Pl5expF2
2l

D E dx dx8 dx9 Fxx8,x8x9~T!uxux8hx9G .
~5.20!

Here the kernelF is given by

Fxx8,x8x9~T!5Gxx8~2T!dx8x9

2E dy Gyx~T!Gyx8~T!Gyx9~T!.

~5.21!

For vanishingl only P0 contributes. In wave-number spac
we thus obtain, introducinguk5*dx exp(ikx)u(x) and noting
from Eq. ~1.5! that Gk(t)5exp@2nk2t#, the distribution

P~uk ,T!}expF2
n

DE dk

2p
uuku2@12exp~22nk2T!#G .

~5.22!

This result is completely equivalent to Eq.~3.16! for the
damped oscillator discussed in Sec. III. Forl50, corre-
sponding to the Edwards-Wilkinson case, only gapless di
sive modesuk}exp@2nk2t# contribute to the time-dependen
distribution; we also note that the distribution remains sy
metric.

To first order inl the diffusive modes interact and w
obtain a correction toPskew given byPl in Eq. ~5.20!. This
contribution is odd inu and characterized by the kernelF. In
other words, the scattering of the diffusive modes on o
another due to the termlu¹u in the Burgers equation~5.8!
yields a skew distribution inu. In the limit T→` this term
vanishes and we obtain the symmetric stationary distribut
Correspondingly, in wave-number space we have to ordel,

Pl~uk ,T!}expF2
2l

D E dk

2p

dk8

2p
Fk,k8~T!uku2k2k8hk8G ,

~5.23!

Fk,k8~T!5Gk~2T!2Gk~T!Gk1k8~T!Gk8~T!, ~5.24!

showing the interaction between the variousk modes~the
cascade!.

3. The short-time skew distribution

At shorter times, i.e.,T<Tco
diff , the approximation of re-

placing the orbit near the zero-energy submanifold with
orbit on the submanifold ceases to be valid and we have
consider the equations of motion~4.14! and ~4.15! in more
detail in order to identify the contribution toSsol.

Although the noiseless Burgers equation is exac
soluble by means of the Cole-Hopf transformation, the eq
tions of motion~4.14! and ~4.15! describing the noisy cas
are presumably not exactly integrable. They do, howev
admit special permanent profile or solitary wave solutio
with superposed linear diffusive modes. It moreover follo
from the path integral formulation in paper II that an arb
trary interface profile can be represented by a dilute gas
solitons, at least in the inviscid limit for smalln, where we
can neglect soliton overlap contributions.

e
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In the form given by Eqs.~1.10! and ~1.11! these equa-
tions were discussed in detail in paper II where we identifi
the elementary excitations. The spectrum consists of righ
hand and left-hand nonlinear soliton modes with superpo
linear diffusive modes. The localized soliton modes hav
finite energy and thus correspond to the nearby phase-s
orbits approaching the zero-energy manifold. At long tim
the soliton energy must go to zero and the remaining su
posed diffusive modes determinePskew as discussed above
Note that the nonlinear soliton mode can be regarded
bound state of diffusive modes; this follows from the stab
ity analysis in paper I and is a consequence of Levinso
theorem. In paper II we performed a shift transformation
the noise variable,p→n(u2w), in order to express the
Hamiltonian densityHB in Eq. ~4.16! in a canonical form
with a harmonic component describing the linear case, yie
ing the field equations~1.10! and~1.11!. In the present con-
text we summarize the soliton dynamics in terms ofp andu
in accordance with the present interpretation of the transi
to the stationary state. The right- and left-hand solitons t
play a different role in the weight of the interface morpho
ogy. In the static limit the soliton modes have the form

u~x!56u0 tanhFlu0

2n
~x2x0!G , ~5.25!

with amplitudeu0 and positionx0. Using the Galilean invari-
ance of the field equations~4.14! and ~4.15!, i.e., observing
that the operator]/]t2lu¹ is invariant under the transfor
mation x→x2lũt, u→u1ũ, propagating solitons with
boundary valuesu→u6 for x→6L, L is the size of the
system, are obtained by boosting the static solitons in
~5.25!. Moreover, the propagation velocityv is given byu1

andu2 according to the soliton condition,

u11u252
2v
l

, ~5.26!

which thus determines the kinetics and matching conditi
for a multisoliton configuration describing a growing inte
face.

The right-hand soliton corresponds top50 and is accord-
ing to Eq.~4.14! a solution of the noiseless Burgers equati
~1.1!. Dynamical attributes are a feature of the noisy case
this soliton thus carries vanishing energy,EB5*dxHB50,
vanishing momentum,PB5*dx u¹p50, and vanishing ac-
tion SB50, and corresponds to an orbit on the transient ze
energy manifold. We note that a single right-hand soliton
a multisoliton solution cannot satisfy the boundary condit
of vanishing slope.

The left-hand soliton moves on the submanifoldp52nu
and satisfies according to Eq.~4.14! the noiseless Burger
equation~1.1! with n replaced by2n. It carries energy, mo-
mentum, and action given by

EB5
2

3
nl~u1

3 2u2
3 !, ~5.27!

PB5n~u1
2 2u2

2 !, ~5.28!

SB5 1
6 nluu12u2u3T. ~5.29!
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Sinceu1,u2 for a right-hand solitonEB is negative andPB
has according to Eq.~5.26! the same sign as the velocityv.
The actionSB is positive and Galilean invariant. We als
note that although the soliton is confined to the submanif
p52nu the energy is nonvanishing. This is associated w
the nonequal boundary valuesu1 and u2 and also follows
directly from Eq.~4.16!, where insertingp52nu we obtain a
total derivative. Hence,EB5*dxHB5(2nl/3)(u1

3 2u2
3 ),

whereu1 andu2 are the boundary values.
As discussed in paper II the morphology of a growi

interface is determined by matching a set of right-hand a
left-hand solitons according to the soliton condition~5.26!.
The right- and left-hand solitons are exact solutions of
damped and undamped~2n) noiseless Burgers equation
respectively. Their stability is associated with the nonequ
ity of the boundary values,u1Þu2 , corresponding to a non
vanishing slope current at the boundaries. In a multisoli
configuration with vanishing boundary conditions curre
thus flows between the solitons. The current isgeneratedby
the left-hand solitons anddissipated by the right-hand
solitons—this is another view of the cascade driving t
noisy Burgers equation. The morphology is depicted
Fig. 7.

The probability of a soliton morphology is determined b
Ssol(u,T). Assuming thatSsol5lF(u,T) a scaling argumen
similar to linear case,u→mu, p→mp, l→m21l, andSsol
→m2Ssol, following from the general form of the equation
of motion ~4.14! and~4.15! and the action~4.1! implies that
F→m3F. This is consistent with the expression~5.29! and
we obtain

Ssol~u,T!5
1

6
nlT(

lhs
uu12u2u3, ~5.30!

where the summation is only over contributing left-ha
solitons.

Beyond this point our discussion becomes necessa
more qualitative and heuristic since we dont possess a c
plete solution of the coupled field equations. The noninteg
bility and the constraint imposed by the soliton conditi
~5.26! imply that we only have available a dilute gas of righ
hand and left-hand solitons. First, we notice that for an in
nite system the soliton velocityv given by Eq.~5.26! ranges
freely, implying that thecenter of massof the soliton ampli-
tudeucm5(u11u2)/2 also can take arbitrary values. Sinc
T enters as a prefactor in Eq.~5.30! Ssol grows forT→`, i.e.,
P}exp@2Ssol/D#→0, and we are unable to identify a sol
tonic crossover time. This is consistent with the general d

FIG. 7. We depict the slope soliton morphology for a growi
interface in a system of sizeL. In accordance with a growth situa
tion we have imposed periodic boundary conditions.
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cussion of a growing interface@37#. Generally, the crossove
time Tco}Lz, wherez is the dynamic exponent. As in th
linear case forl50 discussed above the saturation width
a growing interface is a finite-size effect and the transi
growth does not saturate to stationary growth for an infin
system. Whereas the situation was easy to analyze in
linear case where we can identify the independent mo
and where the system sizeL is replaced by the inverse wav
number 1/k, i.e., the thermodynamic limit is probed in th
infrared limit k→0, the situation is more subtle in the no
linear soliton case since we do not have a normal m
structure but only approximateelementary excitations.

On the other hand, for a finite-size system, imposing
example periodic boundary conditions as indicated in Fig
in order to ensure a growing interface inh as theslopesoli-
tons revolve, the velocityv becomes endowed with a sca
and isquantizedin units of L/T. Notice here the importan
difference between the diffusive case and the solitonic c
In the diffusive case theexcitationsare not propagating bu
are linear combinations of growing and decaying modes
discussed in Sec. III, and the system sizeL only enters in the
quantizationof the wave numberk}1/L, yielding the cross-
over timeTco

diff}L2. In the solitonic case the localized mod
are propagating giving rise to genuine nonequilibriu
growth. The system sizeL then enters together with the tim
T in setting a scale for the velocityv.

A simple estimate, replacing the soliton amplitudeu
5u12u2 in the general expression~5.30! by ucm5(u1

1u2)/252v/l from Eq. ~5.26! and moreoverv by L/T
we obtain Ssol}const3nL3/l2T2, which inserted in P
}exp@2Ssol/D#, yields the soliton crossover time,

Tco
sol}S n

D D 1

l
L3/2, ~5.31!

and we infer the dynamic exponentz53/2. In the transient
short-time regimeT!Tco

sol the soliton configurations contrib
ute toP; in the long-time regimeT@Tco

sol the soliton contri-
bution vanishes and only the diffusive modes and their in
actions contribute toP. We also notice that the expressio
~5.31! is consistent with the dimensionless argume
l(D/n)1/2t/x3/2 in the scaling function for the slope correla
tion function discussed in paper II and in@43,44,52#. In Fig.
8 we have depicted the crossover regimes.

FIG. 8. Here we depict the crossover time as a function of
system sizeL. In the early time regime forT!Tco

sol the distribution
is dominated by soliton contributions. In the intermediate time
gime forTco

diff@T@Tco
sol the soliton contributions become suppress

leaving the diffusive mode contributions. Finally, forT@Tco
diff the

diffusive modes also die out and we approach the stationary di
bution.
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The short-time probability distributionP(h,T) for T
!Tco

sol has been discussed within the directed polymer
proach@31,67#. Based upon a replica scaling analysis@68#
one finds for positiveh ~measured relative to the grow
ing mean height! the heuristic expressionP(h,T)
}exp@2(h/T1/3)h#, whereh53/2; for h,0 based on numeri-
cal results,h;2.5. Recent exact results for the asymmet
exclusion model, which falls in the same universality class
the Burgers equation, see Ref.@69#, where other reference
also can be found and also seems to have bearings on
height distribution. Using the Bethe ansatz method a sk
distribution, characterized by the exponents 3/2 and 5
have been found for the large deviation function of the tim
averaged current.

Within the present soliton approach we can derive a qu
tative expression for the early time height distribution
noting that uu12u2u3;(uL)3/2(Tl)23/2;h3/2(Tl)23/2. In-
serting this result in the general expression~5.30!, we obtain

Psol~h,T!}expS 2
n

D F 1

lTG1/2

h3/2D , ~5.32!

in accordance with the directed polymer-replica-based re
and related to the exact results for the asymmetric exclus
model. The skewness of the distribution inh must then arise
from the bias in the statistical weight exp@2S/D# assigned to
the left- and right-hand solitons giving rise to a predom
nance of right-hand solitons (S50), corresponding to rela
tive forward growth. Unfortunately, our present understan
ing of the soliton approach and the inaccessibility of a m
detailed multisoliton solution do not allow a more detail
analysis.

B. The general case

In the general case ford.1 the slope and noise fieldsun
and pn have longitudinal vector character and are govern
by Eqs. ~4.3! and ~4.4! determining an orbit
„un(xp ,t),pn(xp ,t)… in pn-un phase space. At long times th
orbit must pass close to the stationary saddle point (un ,pn)
5(0,0) in order to induce Markovian behavior and th
progress onto the stationary zero-energy manifoldEB
5*ddxHB50 with energy density given by Eq.~4.2!, yield-
ing the weak noise distributionP}exp@2SB /D# with SB
given by Eq.~4.1!.

In d51, as discussed in Sec. V A, the orbit on the statio
ary manifold is attracted to the submanifoldp52nu, yield-
ing the symmetric stationary distribution~1.9! with time-
dependent skew corrections. Ford.1 this behavior is only
encountered in the linear Edwards-Wilkinson case forl50;
note also the general discussion in Sec. II. The attractio
the submanifoldpn52nun is associated with the underlyin
fluctuation-dissipation theorem and gives rise to the stati
ary Gaussian distributionPst}exp@2(n/D)*ddx un(x)2#; the
corresponding free energy isF5(1/2)*ddx un(x)2. This dis-
tribution yields the roughness exponentz5(22d)/2. The
dynamic exponentz52, corresponding to the diffusive mod
contribution; note that the Galilean invariance is not ope
tive in the linear case and that we consequently do not h
the scaling law constraintz1z52.
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In the nonlinear caselÞ0 for d.2 the long-time orbit
emerging from the vicinity of the stationary point (un ,pn)
5(0,0) diverges for largerun from the submanifoldpn
52nun , which constitutes a sort oftangent planeto the
zero-energy surface at the stationary point. In the limitl
→0 the energy surface then collapses to the tangent pl
More detailed, in the stationary limit, the distribution
given by

Pst}expF2
1

DE0

`

ddx dt pn

]un

]t G . ~5.33!

Noting that pn is slaved to un on the orbit, we obtain in
general~to leading order in¹n),

pn5unFd~u2!1up¹nupGd~u2!, ~5.34!

where the scalar functionsFd andGd depend on the invari-
ant u25unun and parametrically on the dimensiond. In one
dimension we haveF152n andG150. Ford.1 to leading
order in¹n the distributionPst is even inun . Note, however,
that for GdÞ0 there is a skew correction toPst. Assuming
that this analysis is valid, the determination ofFd andGd is
then given by the solution of the equations of motion~4.3!
and ~4.4! on the stationary zero-energy manifold.

In the nonlinear case ford.2 the rough phase governe
by the strong coupling fixed point only appears for a ren
malized coupling strengthl̃25(Dl)2/n3 exceeding a finite
threshold valuel̃c @70–72# and recent work@55,56# more-
over indicates that unlike the case ind51 even the station-
ary probability distribution exhibits skewness, i.e.,Pst(u)
ÞPst(2u). Such a behavior does not seem compatible w
the analysis above and indicates that the present weak n
approach only applies to the weak-coupling phase ford.2.
Presumably, the strong coupling phase forl̃.l̃c is only
accessed beyond a critical noise strengthDc , l̃c

2

5(Dcl)2/n3. These issues and the fact that the strong c
pling fixed point~fortuitously! can be analyzed ind51 in a
et
e.

-

h
ise

-

nonperturbative weak noise approximation remain not v
well understood and call for further investigations.

C. Summary and conclusion

In the present paper we have advanced a general w
noise canonical phase-space approach to stochastic sys
governed by a Langevin equation driven by additive wh
noise. Reformulating the associated Fokker-Planck equa
in the nonperturbative weak noise limit in terms of
Hamilton-Jacobi equation we have discussed the tim
dependent and stationary probability distributions from a
nonical phase-space point of view. The issue of solving
stochastic Langevin equation or the associated Fok
Planck equation is thus replaced by solving coupled Ham
ton equations of motion determining the orbits in pha
space. The stochastic nature of the underlying problem
reflected in a peculiar topology of the energy surfaces diff
ent from the one encountered in ordinary dynamical pr
lems. The Markovian behavior thus corresponds to the e
tence of a stationary hyperbolic saddle point, which contr
the behavior of the orbits in the long-time limit.

We have, in particular, applied the canonical phase-sp
approach to the noisy Burgers equation describing a grow
interface in one dimension. We have recovered the w
known stationary distribution and derived expressions for
time-dependent distribution, at long times governed by lin
diffusive modes and their interaction and at shorter time
nonlinear soliton excitations. In higher dimensions where
noisy Burgers equation predicts a kinetic phase transition
a strong coupling phase the canonical phase-space appr
only seems to access the weak coupling phase.
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