PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Canonical phase-space approach to the noisy Burgers equation: Probability distributions
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We present a canonical phase-space approach to stochastic systems described by Langevin equations driven
by white noise. Mapping the associated Fokker-Planck equation to a Hamilton-Jacobi equation in the nonper-
turbative weak noise limit we invoke principle of least actionfor the determination of the probability
distributions. We apply the scheme to the noisy Burgers and Kardar-Parisi-Zhang equations and discuss the
time-dependent and stationary probability distributions. In one dimension we derive the long-time skew dis-
tribution approaching the symmetric stationary Gaussian distribution. In the short-time region we discuss
heuristically the nonlinear soliton contributions and derive an expression for the distribution in accordance with
the directed polymer-replica and asymmetric exclusion model results. We also comment on the distribution in
higher dimensiond.S1063-651X%99)09705-4

PACS numbgs): 05.10.Gg, 64.60.Ht, 05.45.Yv

[. INTRODUCTION recognize the usual nonlinear convective tefd@]. As a
nonlinear model for hydrodynamical turbulerj@d—27, Eq.

This is the third of a series of papers where we investigatél.1) has been studied intensively. It was recognized early
the noisy Burgers equation in the context of modeling athat the nonlinear structure of the damped velocity field is
growing interface; for a brief account of the present papedominated by shock wavd$,19], yielding aninverse cas-
also we refer td1]. The previous two papers are denoted ascadeand that the Burgers equation does, in fact, not charac-
paper I[2] and paper Il hereaft¢B]; a brief account of paper terize Navier-Stokes turbulence, which is governed lji-a
Il also appeared if4]. In papers | and Il we discussed the rect cascadeand Kolmogoroff scaling in the inertial regime.
originally proposed one-dimensional noiseless Burgers equa- Treating the fieldu as the local slope of a growing inter-
tion [5,6] from a solitonic point of view and the noisy one- face, we analyzed in paper I, where a more complete bibli-
dimensional Burgers equatidi7,8] in terms of a Martin- ography can be found, the Burgers equation from the point of
Siggia-Rosg MSR) path integra[9—14, respectively. view of a soliton-carrying nonlinear damped evolution equa-

Phenomena far from equilibrium are widespread, includtion [28]. The equation describes the transient damped evo-
ing turbulence in fluids, interface and growth problems,lution of an initial slope configuration, in terms of a gas of
chemical reactions, biological systems, and even economicahoving right-hand viscosity-smoothed solitons connected by
and sociological structures. In recent years much of the focusamp solutions and with superposed damped diffusive modes
of modern statistical physics and soft condensed matter hagith a gap in their spectrum proportional to the soliton am-
shifted towards such systems. Drawing on the case of statiglitudes. In a heuristic sense the transient morphology is thus
and dynamic critical phenomena in and close to equilibriumcharacterized by two kinds of excitations: Nonlinear soliton
[15,16], where scaling, critical exponents, and universalitymodes and linear gapful diffusive modes. This picture is also
have served to organize our understanding and to provideorne out by the nonlinear Cole-Hopf transformat{@9—
calculational tools, a similar approach has been advancegil],
towards nonequilibrium phenomena with the purpose of elu-
cidating scaling properties and more generally the morphol- N (X
ogy or pattern formation in a driven state. W(X,t)=eXF{2—Vf dx’ u(x’,t)

In this context the noisy Burgers equation provides maybe
the simplest continuum description of an open driven nonlin- ) ) e L .
ear system exhibiting scaling and pattern formation. The€ating the slope field to the diffusive fieldw satisfying the
Burgers equation was originally suggested in the onelinear diffusion equation,
dimensional noiseless versi¢h,6,17—-19,

, 1.2

ow

P , e V2w, (1.3
— —\uV |u=rV-u, (1.1
at
. . ) ) with solution
as a model for irrotational hydrodynamical fluid flow. Here
is the irrotational velocity field ana is a damping constant
or viscosity. Choosing the nonlinear coupling=—1, we W(x,t):f dx’ G(x—x",t)wy(x"), (1.4
*Permanet address. G(x,t)=[4mvt] Y2 exd — x?/4vt], (1.5
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providing the generalization of the Boltzmann factor

) (1.6 exd —E/T]for equilibrium processes to dynamical processes.

The Martin-Siggia-Rose path integral approach moreover
allowing for a steepest descent analysis in the inviscid limi€rmitted a simple interpretation of the scaling properties of
v—0[23,24. a growing interface. The dynamical exponent3/2, enter-

The emphasis on the nonlinear modes in paper | and th&9 in the dynamical scaling relatid31-33,35-39

insight gained formed the natural starting point for our study lvl2e-2 ,
of the noisy Burgers equation in paper Il. This equation has (u(x,u(0,0)= x| F(tl/Ix%), (1.1
the form[7,8,31-33,

N (X
Wo(X) = ex;{z—vf dx’ ug(x")

is thus related to the gapless soliton dispersion law

u=vV2u+Vy, (1.7 Ecc\IT?, (1.13

i AUV
st M
whereas the roughness exponént 1/2 follows from the

where the Gaussian white noise driving the equation is SP&pectral representation
tially short-range correlated according to ’

(p(x,)p(x",t"))=A8(x—x")5(t—t"), (1.8 (u(x,t)u(0,0)>=f dK G(K)exd —iEt+iKx],

characterized by the noise strength Equation(1.7) has a (1.14
much richer structure than the noiseless counterpart. Th
noise is here a singular perturbation in the sense that even
weak noise strength eventually drives the morphology de-
scribed by Eq(1.7) into a stationary driven state; the char-
acteristic time scale is set ly:In(1/A), which diverges for
A—0. The singular nature of the noise is also reflected in th
known stationary probability distribution for the slope field
[31,34-34,

gssuming that the form factdd(K)~const in the scaling
rggion k~0. The dynamical scaling universality class is as-
sociated with the lowest gapless excitation, i.e.,Xer0 the
soliton mode. Fon =0 the Edwards-WilkinsofEW) uni-
versality clas931,36,4Q0 emerges with a gapless diffusive
fnode w=vk?, corresponding t@=2, {=1/2 being unal-
tered. Furthermore, we derived a heuristic expression for the
scaling functiorF in terms of the probability distribution for
Lévy flights [41,42; the scaling function has also been ac-
] (1.9  cessed by a mode coupling approgdB,44.
Summarizing, the weak noise saddle-point approach to

) o o the noisy Burgers equation advanced in paper Il yields a
Here A constitutes an essential singularity in the same MaNmany-body description of the morphology of a growing in-
ner as the temperature entering the usual Boltzmann factokerface in terms of two kinds afuasiparticlesor elementary

Recasting the stochastic Langevin equatibfY) in terms  excitations Nonlinear soliton modes corresponding to the
of a Martin-Siggia-Rose path integri-12,14,13 we pro-  faceted steplike growth of an interface with superposed lin-
poseda principle of least actionn the nonperturbative weak ear diffusive modes. Furthermore, the scaling properties and
noise limitA—0 and derived canonical saddle point or field the notion of universality classes follow as a byproduct from
equationgnote that in paper Il the noise field was rotated,  the dispersion law of the lowest gapless excitation. For de-
p——ig), tails and references we refer the reader to the somewhat tu-
torial presentation in paper IlI.

14

Pst(u)ocex;{ Afdx u(x)?2

(i—)\uv)u—vvz (1.10 Whereas a good understanding of the one-dimensional

at B @ ' case has been achieved both by renormalization group meth-
0ds[7,8,31-33,3Yand[45-47,44, by mapping to directed

J polymers[31], by mapping to spin chaifgl8—50, from the

(ﬁ —\uvV |o=vV2y, (1.1)  lattice exclusion modd51-53, and by the soliton approach

in paper Il, the general case ih dimensions has proven

coupling the slope fieldi to a deterministic auxiliaryhoise mucht_ mq{rek difIihcqut. :ﬁr%dSJdimensions the noisy Burgers
field ¢. The coupled field equatiord.10 and(1.11) effec- equation takes the foriv.,cl,

tively replace the stochastic equatith?7) and describe the 9
morphology of a growing interface. In addition to the right- (——KUme) u,=rVau,+V,7. (1.15
hand soliton already present in the noiseless case as dis- ot

cussed in paper I, the field equatiofis10 and(1.11) also o ) )

admit an equivalent left-hand soliton. A growing interface Here the longitudinal vector field,, n=1, ... d, is asso-
can thus be viewed as a gas of connected right-hand arfdated with the height profile of a growing interface accord-
left-hand solitons with superposed diffusive modes. Thdnd to (I, is a line element

weak noise approach also allows a dynamical description of

the soliton and diffusive mode configurations and associates un=Vph,

an actionS, energyE, and momentunil with a particular

interface morphology. The statistical weight of a configura- h B XndI 11
tion is given by exp—SA] with the dynamical actior (Xn) = ntn- (1.18
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FurthermoreV2=V .V, and we assume summation over re- (i) In the generic case of a general nonlinear Langevin
peated Cartesian indices. The height fiblis thus the un- equation for a set of stochastic variables driven by white
derlying potential for the force or slopefield u,,. It follows  noise, the weak noise limit of the associated Fokker-Planck
from Egs.(1.19 and(1.16 thath satisfies the Kardar-Parisi- equation takes the form of a Hamilton-Jacobi equation,

Zhang(KP2) equation[31-33, which in turn implies a symplectic structure withpainciple
ah \ of least action an action, an associated Hamiltonian, and
= uV2h+=V hV,h+F+7, (1.17) Hamilton equations pf m'otlon..Thl's formulatpn s equiva-
at 2 lent to the saddle-point discussion in the Martin-Siggia-Rose

o _ _ _ . approach in paper Il.
for a growing interface ird dimensions. Assumingz)=0 (i) The ensuing canonical phase-space formulation allows
we have for completion here introduced the drift tefe for 5 discussion of the time-dependent probability distribu-
—(M2)(VyhVih) in Eq. (1.17) in order to ensure thah)  tions, i.e., the weak noise solutions of the Fokker-Planck
decays in time in a comoving frame. In Eqd.15 and  equation, in terms of phase-space orbits on conserved energy
(1.1 v is damping constant or viscosity characterizing thesyrfaces, governed by Hamilton equations of motion. The
linear diffusive term,\ is a coupling strength for the non- action associated with an orbit plays the role of a weight
linear mode coupling or growth term, and, finally,is a  function in much the same way as the Hamiltonian entering
Gaussian white noise driving the equation and correlate¢he Boltzmann factor in the description of thermodynamic

according to equilibrium. In the kinetic nonequilibrium problem defined
by the Langevin equation the dynamic action yields the prob-
t "N =ATT s(x.—x\)s(t—t'), ability distributions.
(7% 7% 1) l_n[ (Xn=n) St =) (iii) In the canonical phase-space formulation the under-

(1.18 lying stochastic nature of the Langevin equation and the re-
laxational character of the solutions of the Fokker-Planck
whereA is the noise strength. equation are reflected in the topological structure of the en-
In higher-dimensions dynamic renormalization group cal-ergy surfaces. A structure that differs markedly from the en-
culations[31-33 yield a (lower) critical dimension atd  ergy surface topology for ordinary dynamical problems, in
=2 and a kinetic phase transition abade: 2, separating a particular, the zero-energy manifold that determines the sta-
smooth phase characterized by the EW universality clasgonary state, i.e., the stationary probability distribution, has a
yielding {=(2—d)/2 andz=2 and a rough phase character- two-fold submanifold structure, including a hyperbolic sta-
ized by a strong coupling fixed point. On the transition linetionary point, which in the simple case of a single stochastic
renormalization group calculations and scaling argumentsariable, corresponds to the unstable maximum ofiran
based on the mapping to directed polymers yield the expoverted potential. Moreover, thavaiting time for the orbits
nents{=0 andz=2 and suggest an upper critical dimensionpassing close to the stationary point accounts for the Mar-
d=4 [54]. Most recently, an operator expansion method hakovian behavior of the probability distributions. Finally, the
been applied to the strong coupling phase yieldiggz long-time orbit close to the zero-energy manifold determines
=(2/5,8/5) ind=2 and {,z)=(2/7,12/7) ind=3 [55,56]. via the action the time-dependent probability distribution.

In the present paper we focus on the stationary and time- (iv) In the case of a few degrees of freedom the canonical
dependent probability distributions for the height and slopghase-space approach yields the established results following
fields described by the Burgers and KPZ equati¢hd  from an analysis of the Fokker-Planck equations. On the
and(1.17), respectively. As discussed in paper Il these dis-other hand, in the case of many degrees of freedom, i.e., the
tributions are basically given by the Martin-Siggia-Rose pathfield theoretical case, the Fokker-Planck equation becomes
integral weighted by the effective action for the appropriatean unwieldy multidimensional differential-integro equation,
paths. In the weak noise limit only the paths governed by thend the canonical phase-space approach, replacing the
saddle-point equations contribute to the distributions and, aBokker-Planck equatior(in the weak noise limjt with
will be discussed here, we can actually circumvent the patheoupled canonical field equations yields, in addition to pro-
integral formulation entirely by a more direct approach basediding an alternative point of view of the stochastic pro-
on the Fokker-Planck equation. In the weak noise limit thiscesses in terms of dynamical system theory, a methodologi-
equation takes the form of a Hamilton-Jacobi equation im<al advantage; particularly in the case where we can
plying a symplectic structure and immediately lending itselfdetermine the zero-energy manifold explicitly.
to a canonical phase-space formulation. We are thus able in a (v) In the field theoretical cases of the noisy Burgers or
very direct manner to map the stochastic processes describ&PZ equations in one dimension, we can, for special rea-
by the KPZ-Burgers equations to a conserved dynamical sysons, identify the zero-energy manifold and determiiag:
tem with orbits satisfying deterministic canonical Hamilton the stationary distribution(b) the long-time diffusive mode
equations, identical to the saddle-point equations in the patheontribution to the time-dependent skew distribution ér)d
integral approach. The stochastic nature of the Langevima heuristic expression for the short-tinfigansient soliton
equations is reflected in the peculiar topology of the energynode contribution. In the interesting case of higher dimen-
surfaces. It turns out that the stationary probability distribu-sions we are only able to make some general statements.
tion is determined by an infinite-time orbit on the zero- The paper is organized in the following manner. In Sec. II
energy manifold whereas the time-dependent distributionwe consider the generic case of a nonlinear Langevin equa-
approaching the stationary one at long times, corresponds ton for many stochastic variables driven by white noise. We
a finite-time orbit. Below we highlight some of our results. analyze the associated Fokker-Planck equation in the weak
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1
-s

S| (2.9

In Sec. lll we consider as an example the stochastic over-

damped motion in a harmonic potential. In Sec. IV we apply

the formulation to the Burgers and KPZ equations and derivgyhere the weight functioSreplaces the free energy in the

expreSSionS for the distributions. Fina”y, in Sec. V WEequ”ibrium case. By insertion and keeping on|y terms to

present a discussion and a conclusion. leading order inA, it is easy to show tha$ satisfies an
equation of the Hamilton-Jacobi forf61-63,

noise limit and set up the canonical phase-space formulation. F{
Pocex

Il. THE CANONICAL PHASE-SPACE APPROACH

S
Path-integral formulations of the Fokker-Planck equation ¢ TH(,. Va9 =0, (2.9
in the field theoretical case and aspects of the canonical

structure have been discussed in the literature,[S&efor  where, introducing the canonical momentum and energy,
further referencing. Also the sympletic structure of the

Fokker-Planck equation in the weak noise limit for few de- Pn=VnS, (2.6)
grees of freedom with special emphasis on the stationary
distribution has been treated [iB8], where other references E=H, 2.7

can be found. We believe, however, to the best of our knowl- e

edge, that the present emphasis on the canonical phase—spé%% conserved energy or Hamiltonian is given by

formulation as a practical tool is new. For this purpose we _1 _1

here set up the general canonical phase-space formalism. Ad- H=2KnmPoPm=2F P 28

hering to the notation if57] we consider a general Langevin From the symplectic structure and dynamical system theory

equation with additive noisg59,60, the canonical phase-space structure follows immediately.
The actionS has the forn{61],

dqg, 1
W:_EFn(qm)'*"?n- (2.1 day,
S=fdt( an—H), 2.9
Hereqg,, n=1,... N, is a set of time-dependent stochastic

variables. The index is discrete but is readily generalized and from the ensuingrinciple of least actiorwe derive the
later to the field theoretical case of infinitely many degrees oHamiltonian equations of motiondq,/dt=dH/dp, and
freedom wheren typically includes the spatial variables. The dp,/dt=—dH/dq,,

forces F,(q,,) are general functions af, . In the linear case

of coupled (overdamped oscillators, F,=2Q,0m(t), %: K _ EF (2.10
where Q,,,, is a damping matrix Finally, the equation is dt nmPm ™ 5. ’
driven stochastically by a white-noise temq with a Gauss-

ian distribution and correlated according to d 1
9 %:EpmVnFmi (2.11
<77n(t)77m(t,)>:AKnm5(t_tl)- (2.2
for the orbits inp,-q,, phase space.
Here K, is a constant, symmetric, positive-definiteise The above formulation allows a simple interpretation of
matrix of O(1) and the correlations are characterized by thehe solution of the Fokker-Planck equatit¢h?3) in the weak
noise strengti. noise limit A—0 in terms of orbits in a canonical phase

Introducing the notatiorV,=d/Jq, the Fokker-Planck space. In order to determine the transition probability
equation for the (conditiona) probability ~distribution  p(q,,T,q;) for a configuratiory;, att=0 to a configuration
P(gs.t,qy) associated with Eq.(2.1) has the form q, att=T, we simply solve the Hamilton equatiori.10

[57,59,60Q, and(2.12) for an orbit fromqy, to q,, traversed in timd and,
subsequently, evaluate the action according to €9),
§=;Vn[FnP+AKanmP], (2.3  Yielding the weight function in Eq2.4), i.e.,
, 1 (Ta, da,
including a drift termV ,(F,,P), arising from the determinis- P(n ,T,qn)ocex;{ B Kfo,qr’1 dt( Prat ~ H”
tic forceF,,, and a diffusion termAK,,,,V,,V P, originating (2.12

from the noisey, .

In the equilibrium case, choosinlg,,,= ., and setting We notice that the relevant orbit is determined by the initial
F,=V,®, corresponding to an effective fluctuation- and final values);, andq, and the elapsed timé&. The ca-
dissipation theorem and an underlying thermodynamic freeonically conjugate momentum, is a slaved variablede-
energy ®, Eg. (2.3 admits the stationary solutio®,,  termined by Eq.(2.11) and parametrically coupled to Eq.
«exd —®/A] with A entering as a temperature and math-(2.10. Also, unlike the case in ordinary mechanics, the en-
ematically as a singular parameter, i.e., the Boltzmann disergy E=H in Eq. (2.8 is not the central quantity in the
tribution. Using this as a guiding principle we search in thepresent interpretation. The traversal tias the important
general nonequilibrium case for solutions to E2.3) of the  variable and the energy manifoll(T) on which the orbit
form, from q,, to g, lies is a function ofT.
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Pn I The basic structure of phase space, depicted in Fig. 1,
allows for a simple dynamical discussion in terms of dy-
/ g namical system theoy18,63,64 of the approach to the sta-
g | tionary state of a damped noise-driven stochastic system. We
__/ o first consider an orbit on aB# 0 surface fromqg;, to g, in

I time T. The energy surfac&(T) depends orT and in the

limit T—oo, E—0 in order to attain the stationary state. For

A
) / E—0 the initial part of the orbit moves close to tipg=0

submanifold and from Eq2.10 is determined by

dg, 1
dt 2

Fn, (2.15

FIG. 1. Canonical phase space in the general case. The solid
curves indicate the zero-energiansientsubmanifold(l) andsta-  i.e., the deterministic noiseless version of the Langevin equa-
tionary submanifold(Ill). The stationary saddle point is at the origin. tion (2.1). In the absence of noise the motion is transient and
The finite time(T) orbit from gy, to g, migrates to the zero-energy damped. Near théransient submanifoldp,=0 the corre-
submanifold forT— co. sponding actiorS~0 and the probability®=const, corre-

] . sponding to a deterministic behavior. The orbit slows down

The stochastic nature of the Langevin equatiar) and  npear the stationary point in phase space before it picks up
the properties of the weak noise solution of the Fokker-again and moves close to the otretationary submanifold
Planck equation2.3) are reflected in the topological sub- KnmPm— Fnl Pn. This part of the orbit carries a finite action
manifold structure of the energy surfaces pg-q, phase g je. P depends om,, terminates ing, at time T, and
space. Unlike an ordinary mechanical problétnis not  corresponds folf — to the stationary state. The Markovian
bounded from below and does not separate in a kinetic efsenavior, i.e., the loss of memory or the independence of the
ergy and a potential energy only dependingen In EQ. jnitial configurationg,, is thus associated with the lorfiy-
(2.8) the potential—(1/2)Fp, is momentum(velocity) de- finite) waiting time neara) the stationary point.
pendent and gives rise to unbounded motion. Assuming for \yhereas the transient submanifag=0, yieldingE=0,
simplicity thatF,—0 for q,—0 the energy surfaces have s consistent with the Hamiltonian equatiori2.10 and
the submanifold structure depicted in Fig. 1. _ _ (2.1 and gives rise to the deterministic equati@ils), the

The origo in phase space constitutes a hyperbolic stationsiher possibility of imposing a zero-energy submanifold by
ary point, that is, a saddle point determined by the Z€M0getting K, \pm= F,, Will, in general, violate Eqs(2.10 and
energy submanifolgh,=0 and the zero-energy submanifold (2.11). Assuming for simplicity K, = 8, (note that the

defined by Knnpm—Fn being orthogonal top,, i€,  symmetric noise matriK ,, can always be diagonalized by a

KnmPm=FnlPn- _ suitable choice op,) we obtain, insertingp,=F,, in Egs.
Assuming F(Qm) ~2Qnmdm for small g, the Hamil- 5 109 and (2.13), that the relationshigF,(ViFr— Vi F )

tonian(2.8) is quadratic inp, andq, and a stability analysis _q must hold. In the special case whefg="V,®, corre-

can easily be carried out. In accordance with the present,onging to an effective fluctuation-dissipation theorem and
physical interpretation we assume that the stability or dampz, ynderlying free energ®, the above constraint s trivially
ing matrix{2,, implies an unstablg, =0 submanifold and a = gayisfied and we obtain the time-reversed equation of motion
stable submanifolcK ,pm—FnLpy. The orbits in phase yq /dt=(1/2)F, governing the orbit on thp,=F, station-
space close to the zero-energy manifold are thus those dgzy' sypmanifold. It is interesting to notice that the damped

picted in Fig. 1. In thenarmonic oscillator picturewhich  5ti0n on the transient, =0 submanifold is precisely equal
applies close to the stationary point, this behavior correiy ihe time-reversed growing motion on the stationgry

g_ponds tg _the motié)n i_rI' _a'nnverted parabolic potential as  _ F, submanifold. Finally, it is an easy task to determine the
iscussed in more detail in Sec. Ill. stationary distribution,

The stationary state is given by orbits on the zero-energy
manifold whose structure thus determines the nature of the

stochastic problem. Assuming th&(T)x<exd —const< T] Pstocexr{—iq)(qn) , (2.16
for T—oo the stationary state A
Ps(dn) = lim P(q,,T,q;), (2.13 by insertion ofp,=V,® in Eqg. (2.14 and integrating over
T—o time, in agreement with the solution of the Fokker-Planck
equation(2.3 in the stationary case settirg,,= S, and

is obtained from Eq(2.12), i.e., F.=V,b.

1 (= d We are led to the conjecture that for systems in thermal
P(qy) lim exr{ - _J dt Dn&} (2.14  equilibrium where the forc&, is derived from a thermody-

Ao dt namic free energyp, F,=V,®, the infinite-time orbits on
the stationary zero-energy submanifold actually converge to
We note that fofT—< the orbit fromq;, to g, converges to the submanifoldp,=F,, yielding the stationary distribution
the zero-energy manifold, i.ePg is determined by the (2.16. In the general case of a driven stochastic system with
infinite-time orbits on the zero-energy manifold a forceF, not derivable from a free energy the only con-

Too
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straint is given byK,,.pm— F L P, and we have to solve the with A playing the role of an effectiv®lanck constantThe
Hamilton equationiz.l() and (21]) in order to determine noise Variab|ep becomes the momentum Operatﬁrz

the phase-space orbits. . L . A~
We finally wish to comment on the connection between 14d/dq and we obtain, inserting—p in Eq. (2.21),

the present canonical phase-space approach and the formula-

2
tion in terms of aMSR) path integral presented in paper II. Husr=1= AZd_Jri(F‘)F) +éd_F (2.24
. . . . 2 2 order 2 dgl’
For simplicity we consider only the case of a single stochas- dg q
tic degree of freedonmg and set the noise matrik,,,,=1. A
All the relevant properties are extracted from the generawhere sincg p,q]=—iA andF depends om we still have
tor [57], to specify the ordering iNf{F) orger-
Comparing Egs(2.23 and(2.24) with the Fokker-Planck
Z(,u)=<ex;{if dt w(Hq(t) > 2.17 equation(2.3) in the present case,
2
where(- - - ) denotes an average with respect to the Gaussian i = E d_ F i + d_F P, (2.29
noise distribution, at 2| dg? daq dq

) we find agreement provided we choose the symmetric order-
P(”)Mex%_ﬁf dt (1) } (2.18 ing (PF)orge= = (PF+FPp). Alternatively, we are free to
choose anormal ordering (pF)qe=PF and neglect the
The Langevin equatioii2.1) for one degree of freedom is jacobian contribution A/2)dF/dq in Eq. (2.24. The
enforced by the delta function constraififl, dt Jo[da/dt  Fokker-Planck equation then becomes the underlgicirc

+(1/2)F - n]=1, where the Jacobian J  dinger equationfor the path integral with a complex non-
=ex{(1/4)/dtdF/dq] [57]. Exponentiating the constraint Hermitian Hamiltonian,

and in the process introducing an additionaise variable p

averaging over the noisg according to Eq(2.18, and scal- R g2 d
ing p, p—p/A, we obtain the expression, Hep=i5 A2F+AEF . (2.26
q
i . . -
Z(M)“f l_t[ dp dleF{KSMSR eXF{'J dt,u(t)q(t)}, The non-Hermitian form ofip with the p operator on the

(2.19 left ensures that Eq2.25 has the form of a conservation
law ensuring the conservation of probability.
where the action has the Feynman fi5,66], In the limiting caseF =2wq the HamiltonianH,sr de-
scribes a harmonic oscillator and it is easy to see that the
o f q t( da_ | ) 2.20 Jacobian contribution(A/4)dF/dg=i(A/2)w in Hysg pre-
MSR Pt MSR| - ' cisely cancels the zero-point motion and ensures a stationary
state fort—oo.
with complex Hamiltonian Finally, in the classicalweak noise limit forA—0, the
path integral(2.22 is dominated by thelassicalor station-
i, AdF ary orbits following from theprinciple of least action
Husr= — EpF_ 5P Tt 4.dq (2.23) 8Sysr= 0 and determined as solutions of the Hamilton equa-
tions of motion: dg/dt=dHysg/dp and dp/dt=
For the probability distributiorP(q,t,q’) we find, in par- —dHysg/dq; the distribution being given by P
ticular, cexd(i/A)Sysrl- This procedure is, however, entirely
equivalent to performing the limiA—0 directly in the
Fokker-Planck equation, yielding the Hamilton-Jacobi equa-
' (222 tjon (2.5 and the present canonical phase-space approach.

, q [
P(a.t.q )och,ﬂ dp doexp 1 Swsr

where Sysr= fgdt(p dg/dt—Hysg) and the path integral Il. THE HARMONIC OSCILLATOR—AN EXAMPLE
samples all orbits frong’ =q(0) to q=q(t) weighted with
Swusr; hote that the noise field ranges freely.
Reconstructing the underlyimguantum mechanicyield-
ing the path integra{2.22, P(q,t,q’) can be regarded as a

In order to illustrate the phase-space method we here ap-
ply it to the simple case of an overdamped harmonic oscil-
lator described by the Langevin equation and noise correla-

N tions,
matrix element of the evolution operator §xpHysgt] in a
q basis, P(q,t,q')=(qlexp(-iHysrt)|a’), Where Hygg is dq_ N -
thequantunversion ofHygg. It follows thatP(q,t,q") then dat @gq+ 7, 3.
satisfies theSchralinger equation
5P (n(t)n(t"))=A8(t-t"), (3.2
145 =HwssP, (223 jith associated Fokker-Planck equation,
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I
T T
./Bo -
i 0o q q" g 0 209" P

) FIG. 3. Plot ofg and p as functions oft in the case of an
E<0 - overdamped oscillator. Ifa) we depict the dependence qf for
/ largeT the coordinate) stays close to the stationary saddle point. In
E>0 (b) we show the dependence pf for large T the momentunp is

initially close to thetransient submanifoldp=0 but eventually
moves on to thestationarysubmanifoldp=2wq.

FIG. 2. Canonical phase-space plot in the case of an over-

damped oscillator. The solid curves indicate the zero-engegy  dg/dt= — wq, i.e., the deterministic equation of motion for
sientsubmanifold(l) and stationarysubmanifold(ll). The station- =0, with a damped solutiolq= gy exd —wt], qo=9(0),
ary saddle point is at the origin. The finite tiniB) orbit fromq’ to  corresponding to the damped orbit approaching the station-
g" migrates to the zero-energy submanifold for-c. We have  ary saddle point atg,q)=(0,0). The action associated with
also indicated the sign of the eneryin the four domains. this orbit isS=0, i.e.,P=const, characterizing the determin-
istic motion. On the stationary submanifolg=2wq the
Hamiltonian equations coincidé,g/dt= wq, and we obtain
a growing solutiorg= gy exd wt], qo=q(0), associated with
the orbit emerging from the stationary point. As discussed in
This system is well-known and easily analyz&d,59. The  Sec. Il we note that thetationaryorbit is the time-reversed
time-dependent probability distributid?(q,T,q’), the solu-  mirror of the transientorbit.
tion of Eq. (3.3, is given by The complete solution of Eq$3.8) and(3.9) is also eas-

ily obtained. For an orbit frong’ to " in time T and, noting

. o [q—q'exp—wT)]? thatp is a slaved variable, we obtain
P(a,T.q )‘XGXF{—K T—exp—2aT) |’ (3.4

approaching the stationary distribution, q(t)=

P 19

AR TS
gt 2aq|"aq @M

70 . (3.3

q” sinhwt+q’ sinhw(T—t)
sinhoT

, (3.10

1
Ps&q)xexr{ - quz , (3.5

qnewt_ qrew(th)
sinhoT

p(t)=w (3.11
in the limit T—o,

We now proceed to derive these results within the canoni- . . L
cal phase-space formulation. SinBe=2wq and K=1 for For largeT the noise variablg is initially close to zero,

one degree of freedom, we obtain from E@58)—(2.11) the corresponding to the transient deterministic regime; tfor
’ ' close toT, p eventually leaves zero and approaches the lim-

Hamiltonian, g . , .
iting value 2wq", corresponding to the stationary regime.
H=1p?- wqp, (3.6) Likewise, we note thayj~0 for T—o for mostt. The be-
havior of g andp is depicted in Fig. 3.
the action The orbit fromq’ to q” traversed in timeT lies on the
q energy surface given by
Szf dt(pd—q—H>, 3.7
t B (1)2 q!/2+q!2_2qlq/r coshoT (3 12
and the Hamilton equations of motion, 2 sintf wT '
(:I_q:p_wq (3.9 For fixed g’ and q” the energyE is a function of T, E
t ' '

=E(T). In the limit T—~, E—0 and the orbit converges to
the zero-energy manifold as indicated in Fig. 2. The actual
%:w (3.9 T=o orbit passing through the stationary point is then de-
dt P- ' fined by the limiting orbit forT —oe.
Moreover, from the Hamilton equatior(8.8) and (3.9

The phase space is depicted in Fig. 2 and corresponds to thg readily deduce the second-ordégwton equation of mo-
vicinity of the stationary point in Fig. 1 for one degree of tjgn,

freedom.
For a single degree of freedom we can explicitly deter- 42
mine both zero-energy submanifolds=0 and p=2wq, _q_wzq, (3.13

and determine the orbits. On the transipatO submanifold dee
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fact, subject to the Wick rotation—it and arotation of p,

p— —ip, this phase-space structure is mapped to the phase-
q space structure in Fig. 2 with a hyperbolic stationary point

and unbounded orbits. As pointed out in Sec. Il it is precisely

in the energy surface topology that the stochastic problem

differs from an ordinary dynamical problem, here exempli-

fied in the context of the oscillator. Correspondingly, the

action(3.7) for an orbit fromqg’ to q” in timeiT transforms

to —iSysct (w/2)(q"?—q'?) where S, is the action for a

harmonic oscillatof 65,664,

FIG. 4. In the case of the overdamped oscillator the orbifs-in Sesc= 5
phase space depicted in Fig. 2 corresponasspace to the motion 2sineT
in an inverted parabolic potential. The unstable maximum corre-
sponds to the stationary saddle point.

[(q"%+q'?)coswT—2q9'q"], (3.15

yielding P(q",iT,q’) in accordance with Eq3.4).

Finally, we present a simple calculation of the leading
correction at long times to the stationary distributic@b),
which will prove useful in our discussion of the Burgers-
KPZ equations in the next section. Fér— the orbit in
phase space is close to the stationary zero-energy submani-
fold p=2wq. Replacing the orbit frong’ to q” at long times
T with an orbiton the stationary manifoléve obtain a con-
straint, which allows us to simply evaluate the correction to
Ps. Consequently, inserting the zero-energy constraint
_=2wq in the canonical equatio3.8 yields dg/dt=wq
with solutionq”=expwT)q' for g’ andq” on thep=2wq
manifold. Inserting this solution in the actid8.7) we obtain

describing the orbit in an inverted harmonic potential
—(1/2)w?q?, and allowing for a simple discussion of the
motion in p-q phase space.

The finite-energy orbits fall in two categories depending
on the sign ofE. For E>0 the orbits pass through the un-
stable maximum of the inverted potential with finite momen-
tum; for E<O0 the unbounded orbits are confined by the po-
tential to either positive or negative valuesmpfThe limiting
caseE=0 corresponds to an orbit approaching the maxi
mum, the hyperbolic stationary point, with zero momentum.
This point represents an unstable equilibrium whereptre
ticle spends an infinite amount of time, corresponding to the _ n2_ 12y 21 _ _
establishment of Markovian behavior, i.e., the loss of S=e(@-a)=e[1-ep~20T)], (316
memory and independence of the initial configuratigh  in accordance with an expansion of the exact re@ult4) to

The motion is depicted in Fig. 4. leading order in expfwT).
In terms of the explicit solution3.10 and (3.11) we
flnally derive the action associated with the orbit, V. CANONICAL FORMULATION
( T)2 OF THE BURGERS—KPZ EQUATIONS
q//_ q/e—w
S= O —, (3.14 In this section we apply the canonical phase-space method
1-e developed in Sec. Il to the Burgers and KPZ equatidn5
and(1.17.

and recover fronPxexd —SA] the time-dependent and in

the limit T—o, stationary distribution$3.4) and (3.5), re- A. The general case

spectively. ) ) _ _

The Hamiltonian(3.6) and the equations of motio(3.8) First applying the canonical formulation to the Burgers
and (3.9), yielding the canonical phase-space representatiofduation(1.19 the indexn in Sec. Il now comprises both the
of the Langevin equation for a noise-driven overdamped harcontinuous spatial coordinaig , n=1, . . . d and the vector
monic oscillator, have the same structure as the dynamicandex of the slope fieldi,, n=1,... d, i.e.,n—x,,n. Fur-

description of an ordinary harmonic oscillator. Shifting the thermore, we choose the noise matfix,, and the forces,
momentump— p+ wg, H— (1/2)p2— (1/2)wq?, describing  according to the prescription ,m— V2I1,8(x,— ;) and
the motion in an inverted harmonic potential as discusse®f,— —2(¥V2u,+\u,Vu,). With the identification g,
above. The equations of motion now take the fadgydt — — Un(Xm) @andp,— pn(Xy) We thus obtain the Burgers action
=p anddp/dt= wq with solutions given as linear combina- and Hamiltonian density,
tions of a growing and a damped solution as in E§s10 .

and (3.11). However, performing a Wick rotatioh—it=7 SB:J d% dit
in combination with the transformation to a complex mo- 0
mentump— —ip; note thatp is basically a dummy variable
representing the noise. We obtain— — H .., whereH . is
the oscillator HamiltoniarH ,o= 3 p?+ 3 w?q?, yielding the
equations of motiondg/d7=p, and dp/d7=—wq with
bounded periodic motion in imaginary time The energy and the ensuing Hamilton equations of motion,

E=H s is positive and the finite-energy orbits ;|3q phase 5

space move on concentric ellipses. The zero-energy manifold o w2

corresponds to the originp(g)=(0,0) in phase space. In (0712 MimV )un—vV Un= VoV mPm, “.3

auy,
an—HB ) 4.1

1
Hg= pn< vV2u,+ )\umeun—EVanpm) , (4.2
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d A 1
(&t AURY )pn=—szan\(anmum—pmVnum). Hpz=P vV2h+§VnhVnh+ 5P/, 4.9
(4.9
h A

The time-dependent probability distribution is then in the — = vVt S VahVah+p, (4.10
weak noise limit given by

1 a—p=—vV2 +AV,(pV,h) (4.11

P(uan!ulq)oceXF{_KSB(unyTrur,'I) . (45) é’t p " p " ’ '

_ _ o yielding the weak noise distribution
The Hamilton equation$4.3) and (4.4) determining the or-

bits in p,-u, phase space thus replace the noisy Burgers 1

equation(1.15 in the weak noise limit and the distribution P(h,T,h’)fxex;{— KSsz(h,T,h’)}, (4.12
(4.5), evaluated for an appropriate orbit from} to u, tra-

versed in timeT, constitutes a weak noise solution of the as solution of the Fokker-Planck equation,
Fokker-Planck equation associated with the Burgers equa-

tion, JP(h,y) _ J

)
d
g d

sh

A
(vV2h+§VnhVnh)P(h,t)}
(? (un vt)

[
52 The KPZ formulation is, however, completely equivalent
f d’x d’x X S au [ 2H (Xn =X ) P(Up, 1) |. to the Burgers formulation. In E¢4.3) only the longitudinal
component of the noise field, couples to the longitudinal
(4.6)  slope fieldu,=V,h and we can without loss of generality
assume thap,= V¢ is purely longitudinal since Ed¢4.4) is
The time-dependent and stationary distributions are detetinear in p,; this property reflects the conserved nowgrn
mined by the orbits near and on the zero-energy manifolddriving the Burgers equatiol.15. Comparing Eqs4.3)
From the general discussion in Sec. Il it follows that theand (4.4) with Egs. (4.10 and (4.11) we obtain complete
zero-energy manifold has a submanifold structure with aquivalence by choosing,p,=—p or p=—VZ2¢.
transientp,,= 0 submanifold, a hyperbolic stationary point at
(uy,pPn)=(0,0), and a stationary submanifold defined by
vV2u nt AU,V u,—(1/2)V, Vb orthogonalto p,; here . . . . )
treating the integration overin [d% Mg as aninner prod- N one dimension and focusing on the slope figlavhich
uct On the transient submanifolel,=0 Eq. (4.4 is trivially in many respects is thaatural variable in discussing a grow-
satisfied and the orbits are governed by the noiseless Burgelid interface, the canonical equatiofs3) and(4.4) take the

+Afdd o> IT s DP(h,t)
— X d X Xn—X 0.
2 oot | U WP

Up+ AUV ) P(up,t)] (4.13

B. The one-dimensional case

equation, simple form,
d (i—)\uV) =pV2u—V?p (4.14
(at AUV ) u,=rVZau,, 4.7 ot ’ '
0
which is analyzed by means of the Cole-Hopf transformation (— — AuV) p=—vV?p, (4.15
(1.2) u,=V,h, h=(2v/\)Inw, with w satisfying Eq.(1.3) at

and solved by means of the Green’s functidnb general-
ized to thed-dimensional case. On the other hand, on the
stationary submanifold defined gyd®xHz=0, determining 1
the stationary distributioP¢(u,,), the orbits are given by the Hg= p( vV2u+AuvVu— —Vzp) . (4.1
coupled equationgt.3) and(4.4) and will be discussed in the 2

next section.

For later reference we also present the canonical formu
lation of the KPZ equation(1.17). Here we choosey,
—=h(x), pP—=p(X), Kun—Ma8(X,—xp), and Fp—
—2[vV?h+(N\/2)V,hV,h], and obtain action, Hamiltonian
density, and equations of motion,

originating from the Hamiltonian density,

We note that bothu and p are scalar fields and that the
)\ -dependent term on the right-hand side of E4) cancels.
Also, subject to the shift transformatign=v(u—¢) Egs.
(4.14) and (4.15 are identical to the equationd.10 and
(1.11) discussed in paper Il.

It is an important property of the one-dimensional case
T oh that we can detgrmine the explicit. f_orm of the stationary
SKPZ:J' d dt( p——Hsz)' (4.9 zero-energy man|fold, as was the trivial case for one degree

at of freedom discussed in Sec. Il. For
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@ B 8 p=2vu Sg= Ssf(U) + Syt (U, T) + Sgo(U, T), (5.1
where S;; yields the stationary distributioflL.9), Sy« gives
N rise to corrections due to the linear diffusive modes, 8gg

u u

originates from the nonlinear soliton modes; b&}y and
Sso Must vanish in the limitT—o so that we attain the
stationary distribution given b$;.

In the linear Edwards-Wilkinson case far=0 only dif-

FIG. 5. Here we depict the phase-space behavior in the case §¢Sive modes contribute and there is no growth. In wave-
the noisy one-dimensional Burgers equation.(dh we show the ~Number space the field equatiofs14 and (4.15 take the
contractionto the zero-energy submanifofti=2vu, characteristic ~ Same form as Eqg¢3.8) and (3.9) in Sec. Ill. A straightfor-
of the one-dimensional case. (h) we show similar to Fig. 2 the Wward generalization of Eq$3.10 and(3.14 then yields the

orbits in p-u phase space. orbit, uy =uy(T), u,=u(0), andw,= vk?,
p=2wu, (4.17) :uL’ sinhw,t+uy sinhw,(T—t)
Ut sinhw, T ’ (5.2
the canonical equation@.14) and (4.15 become identical
and the energy densiti4.16 takes the form of a total de- and action, herei, = u,(T),
rivative, Hg— (2/3)\ vV u3, yielding a vanishing total en-
ergy Eg=JHzg=0 for vanishing slope field at the bound- B f dk |ug—up exp(— w,T)|? 5 g
aries. Owing to the vector character wf and p, and the NV 20 T 1—exp—2w.T) 5.3

presence of the\(p,VnUm—PmVaUm) term in Eg. (4.4),

such a transformation does not seem possibledfed and  We note that in the limitT—o the action S;,(u,T)

we do not have a similacontractionof the stationary sub- — »[(dk/27)|u,|? in accordance with the stationary distri-
manifold. bution in Eq.(1.9) expanded in wave-number space. Since at

In other WOde, ind=1 the orbit fromu’ tou” in time T |ong timesuk: exp(wkT)ul’( we also find the Correction,
for T—oo does not only approach the zero-energy submani-

folds p=0 and vV?u+AuVu—2V?p orthogonal top but dk,

actually converges to the submanifghd=2vu on the sta- Siff = — Vf E|Uk| expl— 2wy T). (5.9

tionary submanifold. This phase-space behavior is depicted

in F|g 5.1n F|g Sa) we show thecontractionof the station- From Eqs(53) and (54) we observe the Simp'e Sca”ng

ary manifold. In Fig. %b) we depict the orbits i-u phase  property,u— uu, Si— 1?Siy, andSgir— S , i.€., scal-

space in a similar manner as in Fig. 2. ing the slope or height field with a factar the action scales
We finally wish to present a plausibility argument for the \ith ;2. This behavior is compatible with the equations of

attraction of the orbits to the submanifold given by Eq-motion(4.14) and (4.15 provided we scal@— up.

(4.17. Denoting the deviation from the submanifold by Regarding the time dependenceSyf and Sy, we iden-
and insertingp=2v(u+4u) in Eqgs. (4.14 and (4.15 we tify the crossover time

obtain to leading order idu,

9 Tt~ 5.
(ﬁ—xuv>5u=uv25u. (4.18 © K2 ®5

depending on the wave numbeér In the thermodynamic
limit L— the wave numbek has a continuous range and
the crossover time diverges in the infrared litki-0. Con-
sequently, we do not have a separation of time scales.
Since the saturation width of an interface is a finite-size
effect time scale separation only occurs for a finite system. In
the present linear case this is associated withgtientization
V. DISCUSSION AND CONCLUSION of the wave numbek~1/L; note that then=0 mode is
related to the global conservation of slope, ijfadxuis a
gonstant of motion, and we have

Noting thatd/dt —AuV is invariant under the Galilean trans-
formation x—x—\ugt, u—u+uy, and choosing a local
frame with vanishing u, the Fourier modes éuy
xexf —k’t]—0 for larget, implying that the orbits ap-
proach the zero-energy submanifold.

In this final section we derive results for the probability
distributions and attempt to draw some general conclusion

on the basis of the canonical phase-space approach to the L2
noisy Burgers and KPZ equations presented in the previous ngf~ — (5.6)
sections. v

From the general discussion of a growing interfatgg:L?,
where z is the dynamic scaling exponent, and we readily
The time-dependent distributio@.5) is determined by obtainz=2 in accordance with the diffusive mode contribu-
the form of the actiorSz(u,T) in Eq. (4.1). The following  tion with dispersionw,=vk? For T<TI" the diffusive
analysis implies that the action has the generic form, modes contribute to the time-dependent distribution, whereas

A. The one-dimensional case
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for T>TI we cross over to the stationary regime, L o
Sgir(u, T)—0, and we approach the stationary distribution Psieu( U, T)=exp 1 [ dx u'(x)
(1.9 determined byS,(u).

: (5.10

with u’=Vh’ andu=Vh related by the Cole-Hopf transfor-
1. The stationary distribution mation,

In the one-dimensional case the stationary distribution is
known [34] and has the symmetric Gaussian form given by exr{— lh’(x) :J dx’ G(x—x' T)ex;{— Ah(xr)
Eqg. (1.9. This follows directly from the stationary Fokker- 2v ’ 2v
Planck equation(4.6) where the\-dependent term for a (5.11
Gaussian distribution becomes a total derivative and thus i , N ) )
yields a vanishing contribution; an argument, which onlyNOte that sincg dx’G=1 the correctioru’“ vanishes in the
holds in one dimension. The slope fialdx) is thus uncor-  IMit T—% andPge,—1. o
related beyond a finite correlation lengthhat is zero for the In order to examine the skewness of the distribution it is
Burgers equation and microscopic for lattice models fallingconvenient to eliminate the stationary component by forming
in the same universality class. The heigifk) = fdx u per- the ratio,
forms random walk yielding according to EqL.12 the P(u,T) ,
roughness exponet=1/2. 7 EXF{—J dx(u'2 —u'?)
Within the present canonical phase-space formulation the P(—u,T) A
stationary distribution follows immediately from the struc- . ]
ture p=2vu of the stationary submanifold. As in the har- WWhere according to the Cole-Hopf transformatiénl ),

monic oscillator case in Sec. lll, the diffusive modes imply

, (512

that Eg—0 for T—oe. Thus insertingp=2»u in the action ex;{— lh; :j dx’ G(x—x,T)ex;{Ilh}.
(4.1) in the one-dimensional case and performing the time 2v 2v
integration, we obtain in the limif —, (5.13
o Ju Inserting the Green's function (1.5, G(x,T)
Sy(u)= fo dxdtp—= vf dx u(x)?, (5.7 =[4mwvT] Y2exd —x¥4vT], we consider first a few simple

cases.

For a constant slope=uy, i.e., h=ugx—hg, we obtain,

Whereas the effective fluctuation-dissipation theoremoerforrznlng the Gaussian integratiorh.. =+ (Upx+ho)
valid in one dimension implies that the stationary distribu- M TUo/2. We note that the growth termuVu as expected
tion is Gaussian and symmetric in the slopeand in the ~ 9iVes rise to a time-dependent termtify . This term, how-
height fieldh, measured relative to the mean heighj, the ~ €Ver, is compensated for by transforming to a comoving
time-dependent distribution, converging towards the stationframe as in the KPZ equatid.17. The slopeu’, however,
ary one, is expected to exhibit an asymmetric shape corrdS independent off and we obtainu’. = *uy, yielding Sg

and by insertion in Eq(4.5 the distribution(1.9).

sponding to the predominance of peakshiin the growth =0 andP=const, i.e., no dynamics. This is consistent with
direction. the fact thatu=uy andp= p, trivially satisfy the field equa-
tions(4.14) and(4.19 yielding Eg=0, and thus corresponds
2. The long-time skew distribution to a stationary state, as also discussed in paper II.

he Choosing a slope depending linearly wnu=2syx, cor-
responding to a parabolic height profile=syx?+h,, we
obtainu’. = +2sux/(1+2\Tsy), Yyielding the skewness ra-

The phase-space approach also allows us to estimate t
long-time corrections to the stationary distribution. Follow-
ing the reasoning in Sec. lll we replace for larf¢he orbit

nearthe submanifoldgo=2w»u with an orbiton the submani- tio,
fold. Insertingp=2vu in Eq. (4.14) the orbits on the station- 3
ary submanifold are governed by the noiseless Burgers equa- P(u,T) —exd — 3_2 ﬂss TL
tion with v replaced by— v, P(—u,T) 3 A 0[1_(2”—50)2]2 ’
P (5.19
(E—)\uv)u=—vvzu. (58 where we have introduced the siteof the system. The

expression(5.14) only holds forATs,<1; the important as-
This equation is readily solved by means of the Cole-Hopfoect is, however, the dependence on the sigggpf.e., the
transformation(1.2) with solution given by Eqs(1.4—(1.6)  slope of the slope or the bias of the height profile. Bgr
with — v substituted forv. For the action4.1) we then ob- >0 corresponding to a parabolic shapelofvith a mini-
tain Sg=vfdxu?—u’?] and for the time-dependent prob- mum, i.e., a downward peaR(u,T)/P(—u,T)<1, whereas

ability distribution, for s7,<0, yielding an upward peak irh, we have
P(u,T)/P(—u,T)>1. This behavior implies that the distri-
P(u,T)cPg(u)Pgen(u,T), (5.9  bution is skew at finite times and that the upward peaHs in

statistically are more pronounced than the downward peaks,
where the symmetric stationary distributiéh(u) is given i.e., the distribution is biased and changes asymmetrically
by Eq. (1.9 and the time-dependent skew correction by  towards the symmetric stationary distribution.
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1 2\
u SIOpe )\,T P)\ZEX[{ - XJ dX dX’ dX" FXX’,X’X”(T)UXUX’hX" .
| (5.20
i X' Here the kerneF is given by
X x.
\_/ FXX’,X’X"(T):GXX'(ZT) 5X/X”
—j dy ny(T)GyX,(T)Gan(T).

FIG. 6. Here we show the saddle-point construction valid in the
inviscid limit »—0. The saddle-point conditior” —x=ATu(x") (5.21
determines<’_ as the intersection between the line with slopeTl/
and the slope profile(x’). The intersection of the line with the For vanishing\ only P, contributes. In wave-number space
axis determines. we thus obtain, introducing,= [ dx exp({kx)u(x) and noting

from Eq. (1.5 that G,(t) =ex{ — kt], the distribution

We can also gain some insight in the inviscid limit

— 0 from a saddle-point calculation along the lines of similar v(dk >
treatments of the noiseless Burgers equaf@®33. From P(uc, T)<exg — 1 Z-,|”k| [1-exp(—2vk™T)]|.
Eq. (5.11) we obtain, inserting the Green’s functiéh.5), (5.22

N This result is completely equivalent to E¢3.16 for the
EXF{—ZM}:J dx'[4mvT] Y2exd — (1/2v) ¢. ], damped oscillator discussed in Sec. Ill. Por0, corre-
(5.15 sponding to the Edwards-Wilkinson case, only gapless diffu-
sive modesu,xexy — vk’t] contribute to the time-dependent
where ¢ (x,x') = (x—x")2/2T = \h(x'). In the limit »—0 distri_bution; we also note that the distribution remains sym-
the integral is dominated by the local minima given bymetrlc._ . e .
dé.. (x,x')/dx’ =0 and the conditiomi?¢.. (x,x)/dx'2>0. TQ first order. in\ the dlf_fuswe mers interact anq we
obtain a correction t® ., given by P, in Eqg. (5.20. This
contribution is odd iru and characterized by the kerrielIn
other words, the scattering of the diffusive modes on one
another due to the termuVu in the Burgers equatio(b.8)
yields a skew distribution imw. In the limit T—oo this term
P(u,T) r{ Vf (X_X;)Z_ (x—x")? vanishes and we obtain the symmetric stationary distribution.

P(—uT) A T2 , Correspondingly, in wave-number space we have to axder

The solutionsx’. are thus determined by the implicit equa-
tion xL—x=FATu(x.) together with the conditions
= (du/dx’)x —xr >—1I\T, and we obtain the ratio,

(5.16 2\ [ dk dK’
P (U ,T)ocex;:{ - Tf 57 o7 Frok (TUU— - hier |

which can be used in order to analyze the skewness of vari-
ous profilesu(x). Note thatP(u,T)/P(—u,T)—1 in the (5.23
limit T—oo, corresponding to vanishing skewness. In Fig. 6 _
we have depicted the saddle-point construction. Fikr(T) = Gk(2T) = GU(T) G (T) G (T), - (5.29

More insight into the dynamics underlying the skew long-
time distribution is gained by expanding E(.11) in the
nonlinear coupling. Choosing a compact notatiom,
=u(x), hy=h(x), Gy (T)=G(x—x',T), and 8y, = (X
—x"), we obtain to leading order in,

showing the interaction between the varidusnodes(the
cascadg

3. The short-time skew distribution

At shorter times, i.e.T<TY" the approximation of re-
placing the orbit near the zero-energy submanifold with an
QZJ dx’ Gxx'(T)Ux'—(R/V)f dX" Gyxr (T)Uyrhys orbit on the submanifold ceases to be valid and we have to
consider the equations of motida.14) and (4.15 in more
detail in order to identify the contribution 8.
Although the noiseless Burgers equation is exactly
soluble by means of the Cole-Hopf transformation, the equa-

Correspondingly P, factorizes in a component indepen- tions of motion(4.14 and(4.195 describing the noisy case

+ ()\/V)f dX, dX” GXX’(T)GXX”(T)UX/hX” . (51D

dent ofA and a component depending &p are presum_ably not exactly integrable._ They do, howc_aver,
admit special permanent profile or solitary wave solutions
with superposed linear diffusive modes. It moreover follows

Psiew= PoPy » (5.18 berp

from the path integral formulation in paper Il that an arbi-
trary interface profile can be represented by a dilute gas of
v solitons, at least in the inviscid limit for small, where we
= - ! 2 ’ . ! . . . ’
Po ex;{Af X dX' Gy (2T) Ul |, (5.19 can neglect soliton overlap contributions.
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In the form given by Eqgs(1.10 and (1.1 these equa- u
tions were discussed in detail in paper Il where we identified
the elementary excitationsThe spectrum consists of right- _ |
hand and left-hand nonlinear soliton modes with superposed :
linear diffusive modes. The localized soliton modes have a :L [_:-
finite energy and thus correspond to the nearby phase-space ™ L
orbits approaching the zero-energy manifold. At long times
the soliton energy must go to zero and the remaining super-
posed diffusive modes determimy,,,, as discussed above.

Note that the nonlinear soliton mode can be regarded as a FIG. 7. We depict the slope soliton morphology for a growing
bound state of diffusive modes; this follows from the stabil-interface in a system of size. In accordance with a growth situa-
ity analysis in paper | and is a consequence of Levinson’§ion we have imposed periodic boundary conditions.
theorem. In paper Il we performed a shift transformation of
the noise variablep— v(u—¢), in order to express the Sinceu, <u_ foraright-hand solitorg is negative andlg
Hamiltonian densityHg in Eq. (4.16 in a canonical form has according to E¢5.26) the same sign as the velocity
with a harmonic component describing the linear case, yieldThe actionSg is positive and Galilean invariant. We also
ing the field equation$1.10 and(1.11). In the present con- nhote that although the soliton is confined to the submanifold
text we summarize the soliton dynamics in termgpaindu ~ pP=2wu the energy is nonvanishing. This is associated with
in accordance with the present interpretation of the transitiothe nonequal boundary values andu_ and also follows
to the stationary state. The right- and left-hand solitons theulirectly from Eq.(4.16), where insertingg=2vu we obtain a
play a different role in the weight of the interface morphol- total derivative. HenceEg=[dxHg=(2v\/3)(u3 —u?),
ogy. In the static limit the soliton modes have the form whereu, andu_ are the boundary values.
As discussed in paper Il the morphology of a growing

(5.25 interface is determined by matching a set of right-hand and

' left-hand solitons according to the soliton conditit26).

The right- and left-hand solitons are exact solutions of the
with amplitudeu, and positiornx,. Using the Galilean invari- damped and undamped- v) noiseless Burgers equations,
ance of the field equation.14) and(4.19), i.e., observing respectively. Their stability is associated with the nonequal-
that the operatos/dt—\uV is invariant under the transfor- ity of the boundary valuesi, # u_ , corresponding to a non-
mation x—x—\Ut, u—u-+U, propagating solitons with vanishing slope current at the boundaries. In a multisoliton
boundary valuesi—u. for x— =L, L is the size of the configuration with vanishing boundary conditions current
system, are obtained by boosting the static solitons in Ecthus flows between the solitons. The currenjémeratedoy
(5.25. Moreover, the propagation velocityis given byu. the left-hand solitons andlissipated by the right-hand

. AUg
u(x)= *ugtan Z_V(X_XO)

andu_ according to the soliton condition, solitons—this is another view of the cascade driving the
noisy Burgers equation. The morphology is depicted in

2v Fig. 7.
Uptu-=- N (5.26 The probability of a soliton morphology is determined by

Seo(U, T). Assuming thatS;,=AF(u,T) a scaling argument
which thus determines the kinetics and matching conditionsimilar to linear casey— uu, p—up, A—u I\, and S,
for a multisoliton configuration describing a growing inter- — u2S,, following from the general form of the equations
face. of motion (4.14) and(4.195 and the actior{4.1) implies that
The right-hand soliton correspondspe=0 and is accord- F— u3F. This is consistent with the expressi¢®h.29 and
ing to Eq.(4.149) a solution of the noiseless Burgers equationwe obtain
(1.2). Dynamical attributes are a feature of the noisy case and
this soliton thus carries vanishing enerdsg= fdx Hg=0,
vanishing momentunllz= fdx uVp=0, and vanishing ac-
tion Sg=0, and corresponds to an orbit on the transient zero-
energy manifold. We note that a single right-hand soliton ofyhere the summation is only over contributing left-hand
a multisoliton solution cannot satisfy the boundary conditionsglitons.
of vanishing slope. Beyond this point our discussion becomes necessarily
The left-hand soliton moves on the submanifple 2vu  more qualitative and heuristic since we dont possess a com-
and satisfies according to E(4.14 the noiseless Burgers plete solution of the coupled field equations. The nonintegra-
equation(1.1) with » replaced by— v. It carries energy, mo- hility and the constraint imposed by the soliton condition

1
SSO|(u,T)=€v)\T% lus—u_|3, (5.30

mentum, and action given by (5.26 imply that we only have available a dilute gas of right-
) hand and left-hand solitons. First, we notice that for an infi-

E.eo 3_,3 2 nite system the soliton velocity given by Eq.(5.26 ranges

B3 PA (UL —US), (.29 freely, implying that thecenter of massf the soliton ampli-

tudeu,,=(u,.+u_)/2 also can take arbitrary values. Since
Hg=wv(u?—u?), (5.28  Tenters as a prefactor in E.30 S, grows forT—x, i.e.,
Poexd —S,/A]—0, and we are unable to identify a soli-
Sg=%vN|u,—u_|®T. (5.29 tonic crossover time. This is consistent with the general dis-
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T The short-time probability distributiorP(h,T) for T
T2 <ng' has been discussed within the directed polymer ap-
proach[31,67. Based upon a replica scaling analygis]
one finds for positiveh (measured relative to the grow-
stat. gt Too ~ L% ing mean height the heuristic expressionP(h,T)
sexd —(WT¥3) 7], wheren=3/2; forh<0 based on numeri-
cal results,7~2.5. Recent exact results for the asymmetric
L exclusion model, which falls in the same universality class as
the Burgers equation, see RE89], where other references
FIG. 8. Here we depict the crossover time as a function of thealso can be found and also seems to have bearings on the
system sizd.. In the early time regime fof <T5 the distribution  height distribution. Using the Bethe ansatz method a skew
is dominated by soliton contributions. In the intermediate time re-distribution, characterized by the exponents 3/2 and 5/2,
gime for Ta>T>T$J the soliton contributions become suppressedhave been found for the large deviation function of the time-
leaving the diffusive mode contributions. Finally, fde>TS% the  averaged current.
diffusive modes also die out and we approach the stationary distri- Within the present soliton approach we can derive a quali-
bution. tative expression for the early time height distribution by
noting that|u, —u_[3~ (uL)¥(T\) ~32~h¥2Tr) 32 In-
cussion of a growing interfad@7]. Generally, the crossover serting this result in the general expressibr80), we obtain
time T.xL? wherez is the dynamic exponent. As in the
linear case foh =0 discussed above the saturation width for 1102
a growing interface is a finite-size effect and the transient Psol(th)xeXF{ - _{_} h3’2), (5.32
growth does not saturate to stationary growth for an infinite ANT
system. Whereas the situation was easy to analyze in the
linear case where we can identify the independent modesn accordance with the directed polymer-replica-based result
and where the system siteis replaced by the inverse wave and related to the exact results for the asymmetric exclusion
number 1K, i.e., the thermodynamic limit is probed in the model. The skewness of the distributionimust then arise
infrared limit k— 0, the situation is more subtle in the non- from the bias in the statistical weight €xpJ/A] assigned to
linear soliton case since we do not have a normal modgne left- and right-hand solitons giving rise to a predomi-
structure but only approximatlementary excitations nance of right-hand solitonsS&0), corresponding to rela-
On the other hand, for a finite-size system, imposing fortive forward growth. Unfortunately, our present understand-
example periodic boundary conditions as indicated in Fig. 4ng of the soliton approach and the inaccessibility of a more

in order to ensure a growing interfacetiras theslopesoli-  detailed multisoliton solution do not allow a more detailed
tons revolve, the velocity becomes endowed with a scale analysis.

and isquantizedin units of L/T. Notice here the important
difference between the diffusive case and the solitonic case.
In the diffusive case thexcitationsare not propagating but B. The general case
are linear combinations of growing and decaying modes as In the general case fat>1 the slope and noise fields,
discussed in Sec. Ill, and the system dizenly enters inthe andp,, have longitudinal vector character and are governed
quantizationof the wave numbek=1/L, yielding the cross- by Egs. (4.3 and (4.4 determining an orbit
over timengfocLz. In the solitonic case the localized modes (u,(x,,t),pn(Xp,t)) in pp-U, phase space. At long times the
are propagating giving rise to genuine nonequilibriumorbit must pass close to the stationary saddle paipt ;)
growth. The system size then enters together with the time =(0,0) in order to induce Markovian behavior and then
T in setting a scale for the velocity. progress onto the stationary zero-energy manifélg

A simple estimate, replacing the soliton amplitude = [d% Hz=0 with energy density given by E¢4.2), yield-
=u,—u_ in the general expressiot6.30 by u.,=(u, ing the weak noise distributiofPcexd —Sz/A] with Sg
+u_)/2=—v/\ from Eq. (5.20 and moreoverw by L/T  given by Eq.(4.1).

sol.

we obtain Sg,ecconsx vL3/\?T?, which inserted inP Ind=1, as discussed in Sec. V A, the orbit on the station-
cexd —S;y/A], yields the soliton crossover time, ary manifold is attracted to the submanifgde= 2vu, yield-
ing the symmetric stationary distributiof1.9) with time-
TSO'M(1> £L3/2 (5.31) dependent skew corrections. Far-1 this behavior is only
COTLAN ' ' encountered in the linear Edwards-Wilkinson casexferO;

note also the general discussion in Sec. Il. The attraction to
and we infer the dynamic exponert3/2. In the transient the submanifoldp,=2vu,, is associated with the underlying
short-time regimel < T3 the soliton configurations contrib- fluctuation-dissipation theorem and gives rise to the station-
ute toP; in the long-time regimé|'>T§8' the soliton contri- ary Gaussian distributiorPgcexd — (v/A)fd% u,(X)?]; the
bution vanishes and only the diffusive modes and their intercorresponding free energy 5= (1/2)fd% u,(x)2. This dis-
actions contribute td®. We also notice that the expression tribution yields the roughness exponefi (2—d)/2. The
(5.3) is consistent with the dimensionless argumentdynamic exponerg=2, corresponding to the diffusive mode
N(A/v)Y2/x%2 in the scaling function for the slope correla- contribution; note that the Galilean invariance is not opera-
tion function discussed in paper Il and[i#43,44,52. In Fig.  tive in the linear case and that we consequently do not have
8 we have depicted the crossover regimes. the scaling law constrainf+z=2.
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In the nonlinear cas& #0 for d>2 the long-time orbit
emerging from the vicinity of the stationary pointi{,p,)
=(0,0) diverges for largem, from the submanifoldp,
=2wu,, which constitutes a sort aangent planeto the
zero-energy surface at the stationary point. In the limit
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nonperturbative weak noise approximation remain not very
well understood and call for further investigations.

C. Summary and conclusion

—0 the energy surface then collapses to the tangent plane. In the present paper we have advanced a general weak
More detailed, in the stationary limit, the distribution is NOise canonical phase-space approach to stochastic systems

given by

. (5.33

P 1Fdd dt p, 2o
st ex A o X tan

Noting thatp, is slavedto u, on the orbit, we obtain in
general(to leading order irv,,),

(5.39

where the scalar functiors; and G4 depend on the invari-
antu?=u,u, and parametrically on the dimensidnIn one
dimension we hav&,;=2v andG;=0. Ford>1 to leading
order inV , the distributionP; is even inu,,. Note, however,
that for G4# 0 there is a skew correction . Assuming
that this analysis is valid, the determinationFaf and Gy is
then given by the solution of the equations of motidn3)
and (4.4) on the stationary zero-energy manifold.

pPn= uan(UZ) + uanqud(Uz)a

governed by a Langevin equation driven by additive white
noise. Reformulating the associated Fokker-Planck equation
in the nonperturbative weak noise limit in terms of a
Hamilton-Jacobi equation we have discussed the time-
dependent and stationary probability distributions from a ca-
nonical phase-space point of view. The issue of solving the
stochastic Langevin equation or the associated Fokker-
Planck equation is thus replaced by solving coupled Hamil-
ton equations of motion determining the orbits in phase
space. The stochastic nature of the underlying problem is
reflected in a peculiar topology of the energy surfaces differ-
ent from the one encountered in ordinary dynamical prob-
lems. The Markovian behavior thus corresponds to the exis-
tence of a stationary hyperbolic saddle point, which controls
the behavior of the orbits in the long-time limit.

We have, in particular, applied the canonical phase-space
approach to the noisy Burgers equation describing a growing
interface in one dimension. We have recovered the well-

In the nonlinear case fat>2 the rough phase governed known stationary distribution and derived expressions for the
by the strong coupling fixed point only appears for a renortime-dependent distribution, at long times governed by linear

malized coupling strength?=(AX)?/1° exceeding a finite
threshold valuex, [70—72 and recent work55,56 more-
over indicates that unlike the caseds 1 even the station-
ary probability distribution exhibits skewness, i.€4(u)

diffusive modes and their interaction and at shorter time by
nonlinear soliton excitations. In higher dimensions where the
noisy Burgers equation predicts a kinetic phase transition to
a strong coupling phase the canonical phase-space approach

+P.(—u). Such a behavior does not seem compatible witPnly Seems to access the weak coupling phase.
the analysis above and indicates that the present weak noise

approach only applies to the weak-coupling phasedfer2.
Presumably, the strong coupling phase forX. is only
accessed beyond a critical noise strength., 7\§
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